Visualizing orbital angular momentum of plasmonic vortices

被引:68
|
作者
Shen, Z. [1 ]
Hu, Z. J. [2 ]
Yuan, G. H. [3 ]
Min, C. J. [1 ]
Fang, H. [1 ]
Yuan, X-C. [1 ]
机构
[1] Nankai Univ, Key Lab Opt Informat Sci & Technol, Minist Educ China, Inst Modern Opt, Tianjin 300071, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
PHASE SINGULARITY; LIGHT; BEAMS; POLARIZATION; PARTICLES; LENS;
D O I
10.1364/OL.37.004627
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Plasmonic vortices (PVs) are generated by focusing a radially polarized optical vortex (OV) beam onto a metal surface. The intensity distribution of the PV is registered with a near-field scanning optical microscopy and agrees well with a theoretical prediction as well as numerical calculation. Beside the dark central spot, the numerical calculation also shows an azimuthal Poynting vector belonging to the PV, implying that the orbital angular momentum (OAM) was transferred from the radially polarized OV. To directly verify the OAM, plasmonic trapping experiments with gold micrometer particles are performed and the particle rotation is visualized. Further experiments by varying the topological charge of radially polarized OVs show the corresponding changes in rotation in terms of speed and radius. (C) 2012 Optical Society of America
引用
收藏
页码:4627 / 4629
页数:3
相关论文
共 50 条
  • [41] Orbital Angular Momentum-Controlled Tunable Directional Plasmonic Coupler
    Liu, Ting
    Wang, Shouyu
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (01) : 91 - 94
  • [42] Retrieving orbital angular momentum distribution of light with plasmonic vortex lens
    Zhou, Hailong
    Dong, Jianji
    Zhang, Jihua
    Zhang, Xinliang
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [43] On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits
    Mei, Shengtao
    Huang, Kun
    Liu, Hong
    Qin, Fei
    Mehmood, Muhammad Q.
    Xu, Zhengji
    Hong, Minghui
    Zhang, Daohua
    Teng, Jinghua
    Danner, Aaron
    Qiu, Cheng-Wei
    [J]. NANOSCALE, 2016, 8 (04) : 2227 - 2233
  • [44] Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases
    Tan, Qilong
    Guo, Qinghua
    Liu, Hongchao
    Huang, XuGuang
    Zhang, Shuang
    [J]. NANOSCALE, 2017, 9 (15) : 4944 - 4949
  • [45] Measuring orbital angular momentum of acoustic vortices based on Fraunhofer's diffraction*
    Gong, Chao-Fan
    Li, Jing-Jing
    Guo, Kai
    Zhou, Hong-Ping
    Guo, Zhong-Yi
    [J]. CHINESE PHYSICS B, 2020, 29 (10)
  • [46] Transfer of orbital angular momentum between acoustic and optical vortices in optical fiber
    Dashti, Pedram Z.
    Alhassen, Fares
    Lee, Henry P.
    [J]. 2006 OPTICAL FIBER COMMUNICATION CONFERENCE/NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, VOLS 1-6, 2006, : 2421 - 2423
  • [47] Description of the morphology of optical vortices using the orbital angular momentum and its components
    Bekshaev, A. Ya.
    Vasnetsov, M. V.
    Soskin, M. S.
    [J]. OPTICS AND SPECTROSCOPY, 2006, 100 (06) : 910 - 915
  • [48] Propagable Optical Vortices with Natural Noninteger Orbital Angular Momentum in Free Space
    Weng, Xiaoyu
    Miao, Yu
    Wang, Guanxue
    Zhan, Qiufang
    Dong, Xiangmei
    Qu, Junle
    Gao, Xiumin
    Zhuang, Songlin
    [J]. ADVANCED PHOTONICS RESEARCH, 2023, 4 (01):
  • [49] Temporal shaping and time-varying orbital angular momentum of displaced vortices
    Hosseini, Fazele
    Sadeghzadeh, Mohammad A.
    Rahmani, Amir
    Laussy, Fabrice P.
    Dominici, Lorenzo
    [J]. OPTICA, 2020, 7 (10): : 1359 - 1371
  • [50] Elliptic Gaussian vortices with controlled orbital angular momentum for wireless information transmission
    Kotlyar, V. V.
    Kovalev, A. A.
    Porfirev, A. P.
    [J]. OPTICAL TECHNOLOGIES FOR TELECOMMUNICATIONS 2017, 2018, 10774