Privacy-Preserving Truth Discovery in Mobile Crowdsensing: Challenges, Solutions, and Opportunities

被引:52
|
作者
Wang, Cong [1 ]
机构
[1] City Univ Hong Kong, Kowloon Tong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile crowdsensing; truth discovery; privacy; security; cloud;
D O I
10.1145/3201595.3201596
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The ubiquity of sensor-rich mobile devices is pushing forward the paradigm of mobile crowdsensing, which facilitates convenient and cost-effective collection of large amounts of sensory data (e.g., traffic monitoring, environment monitoring, and mobile personalized recommendation services [1, 2]). In practice, however, the sensory data collected from different mobile devices are not always reliable, due to various factors like heterogeneous sensor quality, noise, etc. Hence, a realistic problem faced by mobile crowdsensing is how to extract truthful information from the unreliable sensory data, which is also known as truth discovery [3]. Meanwhile, data privacy has long been an acute concern in mobile crowdsensing systems, as sensory data may reveal sensitive information like daily routines, location, personal health, social relations, and more [1]. In light of these observations, there has been an increasing interest to explore and develop sound privacy-preserving truth discovery techniques for mobile crowdsensing in recent years [4, 5]. In this keynote, I will present our research on privacy-preserving truth discovery in mobile crowdsensing. Compared with prior work, our goal is to promise privacy preservation, cost efficiency, and mobile-friendly deployment at the same time for truth discovery in mobile crowdsensing. I will first discuss the research challenges, which mainly lie in the complicated functionality requirements of truth discovery and practical deployment. I will then introduce our solutions on privacy-preserving truth discovery in mobile crowdsensing [6-8], which build on advanced cryptographic techniques (like garbled circuits and homomorphic encryption) and present in-depth customization aimed for practical performance. Finally, I will discuss some future directions for researchers and practitioners to further investigate innovative solutions toward privacy-preserving truth discovery in mobile crowdsensing.
引用
收藏
页码:1 / 1
页数:1
相关论文
共 50 条
  • [31] BPPF: Bilateral Privacy-Preserving Framework for Mobile Crowdsensing
    LIU Junyu
    YANG Yongjian
    WANG En
    ZTE Communications, 2021, 19 (02) : 20 - 28
  • [32] Location privacy-preserving data recovery for mobile crowdsensing
    Zhou, Tongqing
    Cai, Zhiping
    Xiao, Bin
    Wang, Leye
    Xu, Ming
    Chen, Yueyue
    Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2 (03):
  • [33] Lightweight and Privacy-Preserving Dual Incentives for Mobile Crowdsensing
    Wan, Lin
    Liu, Zhiquan
    Ma, Yong
    Cheng, Yudan
    Wu, Yongdong
    Li, Runchuan
    Ma, Jianfeng
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2024, 12 (02) : 504 - 521
  • [34] A privacy-preserving collaborative reputation system for mobile crowdsensing
    Alamri, Bayan Hashr
    Monowar, Muhammad Mostafa
    Alshehri, Suhair
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2018, 14 (09):
  • [35] Privacy-Preserving User Recruitment Protocol for Mobile Crowdsensing
    Xiao, Mingjun
    Gao, Guoju
    Wu, Jie
    Zhang, Sheng
    Huang, Liusheng
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2020, 28 (02) : 519 - 532
  • [36] Achieving Privacy-Preserving Multitask Allocation for Mobile Crowdsensing
    Zhang, Yuanyuan
    Ying, Zuobin
    Chen, C. L. Philip
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (18) : 16795 - 16806
  • [37] Personalized Privacy-Preserving Task Allocation for Mobile Crowdsensing
    Wang, Zhibo
    Hu, Jiahui
    Lv, Ruizhao
    Wei, Jian
    Wang, Qian
    Yang, Dejun
    Qi, Hairong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2019, 18 (06) : 1330 - 1341
  • [38] Privacy-Preserving Mechanisms for Crowdsensing: Survey and Research Challenges
    Vergara-Laurens, Idalides J.
    Jaimes, Luis G.
    Labrador, Miguel A.
    IEEE INTERNET OF THINGS JOURNAL, 2017, 4 (04): : 855 - 869
  • [39] A Lightweight Privacy-Preserving Truth Discovery Framework for Mobile Crowd Sensing Systems
    Miao, Chenglin
    Su, Lu
    Jiang, Wenjun
    Li, Yaliang
    Tian, Miaomiao
    IEEE INFOCOM 2017 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2017,
  • [40] Privacy-Preserving Streaming Truth Discovery in Crowdsourcing With Differential Privacy
    Wang, Dan
    Ren, Ju
    Wang, Zhibo
    Pang, Xiaoyi
    Zhang, Yaoxue
    Shen, Xuemin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (10) : 3757 - 3772