Prediction of Promiscuity Cliffs Using Machine Learning

被引:4
|
作者
Blaschke, Thomas [1 ]
Feldmann, Christian [1 ]
Bajorath, Juergen [1 ]
机构
[1] Rheinische Friedrich Wilhelms Univ, LIMES Program Unit Chem Biol & Med Chem, B IT, Dept Life Sci Informat, Endenicher Allee 19c, D-53115 Bonn, Germany
关键词
multitarget activity; promiscuity; polypharmacology; machine learning; deep learning; structure-promiscuity relationships; IDENTIFIES PROMISCUITY; DRUG DISCOVERY; POLYPHARMACOLOGY;
D O I
10.1002/minf.202000196
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Compounds with the ability to interact with multiple targets, also called promiscuous compounds, provide the basis for polypharmacological drug discovery. In recent years, a plethora of structural analogs with different promiscuity has been identified. Nevertheless, the molecular origins of promiscuity remain to be elucidated. In this study, we systematically extracted different structural analogs with varying promiscuity using the matched molecular pair (MMP) formalism from public biological screening and medicinal chemistry data. Care was taken to eliminate all compounds with potential false-positive activity annotations from the analysis. Promiscuity predictions were then attempted at the level of compound pairs representing promiscuity cliffs (PCs; formed by analogs with large promiscuity differences) and corresponding non-PC MMPs (analog pairs without significant promiscuity differences). To address this prediction task, different machine learning models were generated and the results were compared with single compound predictions. PCs encoding promiscuity differences were found to contain more structure-promiscuity relationship information than sets of individual promiscuous compounds. In addition, feature analysis was carried out revealing key contributions to the correct prediction of PCs and non-PC MMPs via machine learning.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Prediction of Wind Speed by Using Machine Learning
    Sener, Ugur
    Kilic, Buket Isler
    Tokgozlu, Ahmet
    Aslan, Zafer
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2023 WORKSHOPS, PT I, 2023, 14104 : 73 - 86
  • [22] Vehicle count prediction using machine learning
    Peram, Subba Rao
    Lekha, Mundru Sri
    Jyothsna, Kothagundla Sai Sri
    Pallavi, Kunisetty Lakshmi
    Hema, V
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 706 - 712
  • [23] Prediction of cryptocurrency returns using machine learning
    Erdinc Akyildirim
    Ahmet Goncu
    Ahmet Sensoy
    Annals of Operations Research, 2021, 297 : 3 - 36
  • [24] Prediction of Migration Outcome Using Machine Learning
    Islam, S. M. Rabiul
    Moon, Nazmun Nessa
    Islam, Mohammad Monirul
    Hossain, Refath Ara
    Sharmin, Shayla
    Mostafiz, Asif
    PROGRESSES IN ARTIFICIAL INTELLIGENCE & ROBOTICS: ALGORITHMS & APPLICATIONS, 2022, : 169 - 182
  • [25] Sorghum Yield Prediction using Machine Learning
    Zannou, Judicael Geraud N.
    Houndji, Vinasetan Ratheil
    2019 3RD INTERNATIONAL CONFERENCE ON BIO-ENGINEERING FOR SMART TECHNOLOGIES (BIOSMART), 2019,
  • [26] Prediction of Childbirth Mortality Using Machine Learning
    Metsker, Oleg
    Kopanitsa, Georgy
    Bolgova, Ekaterina
    PHEALTH 2020: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEARABLE MICRO AND NANO TECHNOLOGIES FOR PERSONALIZED HEALTH, 2020, 273 : 109 - 114
  • [27] Prediction of GPCR activity using machine learning
    Yadav, Prakarsh
    Mollaei, Parisa
    Cao, Zhonglin
    Wang, Yuyang
    Farimani, Amir Barati
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 2564 - 2573
  • [28] Diabetes Prediction using Machine Learning Algorithms
    Mujumdar, Aishwarya
    Vaidehi, V.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 292 - 299
  • [29] Tacrolimus Exposure Prediction Using Machine Learning
    Woillard, Jean-Baptiste
    Labriffe, Marc
    Debord, Jean
    Marquet, Pierre
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 110 (02) : 361 - 369
  • [30] Prediction of Posttraumatic Epilepsy using Machine Learning
    Akrami, Haleh
    Irimia, Andrei
    Cui, Wenhui
    Joshi, Anand A.
    Leahy, Richard M.
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600