A variational approach to multiplicity in elliptic problems near resonance

被引:18
|
作者
Ramos, M
Sanchez, L
机构
[1] CMAF, Faculdade de Ciências, Universidade de Lisboa, 1699 Lisboa Codex, Av. Prof. Gama Pinto
关键词
D O I
10.1017/S0308210500023696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear elliptic problem +/-(Delta u + lambda u) + f(x, u) = h(x) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded smooth domain in R-N lambda is near the first eigenvalue and h(x) is orthogonal to the first eigenfunction. We give some conditions of existence of positive solutions and of multiple solutions in terms of the primitive off with respect to u.
引用
下载
收藏
页码:385 / 394
页数:10
相关论文
共 50 条
  • [21] THE DUAL VARIATIONAL PRINCIPLE AND DISCONTINUOUS ELLIPTIC PROBLEMS WITH STRONG RESONANCE AT INFINITY
    ARCOYA, D
    CANADA, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (12) : 1145 - 1154
  • [22] A variational approach for some singular elliptic problems with Hardy potential
    Behvandi, Sajad
    Esmaily, Jafar
    Tavani, Mohammad Reza Heidari
    Alizadeh, Mahmood
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 225 - 236
  • [23] A variational approach for a class of nonlocal elliptic boundary value problems
    S. A. Khuri
    Abdul-Majid Wazwaz
    Journal of Mathematical Chemistry, 2014, 52 : 1324 - 1337
  • [24] A variational approach for some singular elliptic problems with Hardy potential
    Sajad Behvandi
    Jafar Esmaily
    Mohammad Reza Heidari Tavani
    Mahmood Alizadeh
    Journal of Elliptic and Parabolic Equations, 2024, 10 : 225 - 236
  • [25] Variational approach to bifurcation from infinity for nonlinear elliptic problems
    Byeon, Jaeyoung
    Lee, Youngae
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (02) : 269 - 301
  • [26] EXISTENCE OF NONNEGATIVE SOLUTIONS TO SINGULAR ELLIPTIC PROBLEMS, A VARIATIONAL APPROACH
    Godoy, Tomas
    Guerin, Alfredo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (03) : 1505 - 1525
  • [27] A variational approach for a class of nonlocal elliptic boundary value problems
    Khuri, S. A.
    Wazwaz, Abdul-Majid
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (05) : 1324 - 1337
  • [28] MULTIPLICITY RESULTS TO ELLIPTIC PROBLEMS RN
    Barletta, Giuseppina
    Bonanno, Gabriele
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (04): : 715 - 727
  • [29] Multiplicity theorems for superlinear elliptic problems
    Papageorgiou, Nikolaos S.
    Rocha, Eugenio M.
    Staicu, Vasile
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (02) : 199 - 230
  • [30] Multiplicity theorems for superlinear elliptic problems
    Nikolaos S. Papageorgiou
    Eugénio M. Rocha
    Vasile Staicu
    Calculus of Variations and Partial Differential Equations, 2008, 33 : 199 - 230