Exploring marginal treatment effects: Flexible estimation using Stata

被引:34
|
作者
Andresen, Martin Eckhoff [1 ]
机构
[1] Stat Norway, Oslo, Norway
来源
STATA JOURNAL | 2018年 / 18卷 / 01期
关键词
st0516; mtefe; margte; heterogeneity; marginal treatment effects; instrumental variables; LOCAL INSTRUMENTAL VARIABLES; MODELS; AVERAGE; RETURNS;
D O I
10.1177/1536867X1801800108
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In settings that exhibit selection on both levels and gains, marginal treatment effects (MTE) allow us to go beyond local average treatment effects and estimate the whole distribution of effects. In this article, I survey the theory behind MTE and introduce the package mtefe, which uses several estimation methods to fit MTE models. This package provides important improvements and flexibility over existing packages such as margte (Brave and Waistrum, 2014, Stata Journal 14: 191-217) and calculates various treatment-effect parameters based on the results. I illustrate the use of the package with examples.
引用
收藏
页码:118 / 158
页数:41
相关论文
共 50 条
  • [41] Theory and practice of total-factor productivity estimation: The control function approach using Stata
    Rovigatti, Gabriele
    Mollisi, Vincenzo
    [J]. STATA JOURNAL, 2018, 18 (03): : 618 - 662
  • [42] Adaptive truncated weighting for improving marginal structural model estimation of treatment effects informally censored by subsequent therapy
    Bai, Xiaofei
    Liu, Jingyi
    Li, Li
    Faries, Douglas
    [J]. PHARMACEUTICAL STATISTICS, 2015, 14 (06) : 448 - 454
  • [43] ESTIMATING IMPLICIT MARGINAL PRICES OF TOMATOES USING A FLEXIBLE FUNCTIONAL FORM
    JORDAN, JI
    SHEWFELT, RL
    PRUSSIA, SE
    HURST, WC
    [J]. AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1985, 67 (05) : 1274 - 1274
  • [44] Interval estimation for treatment effects using propensity score matching
    Hill, Jennifer
    Reiter, Jerome P.
    [J]. STATISTICS IN MEDICINE, 2006, 25 (13) : 2230 - 2256
  • [45] Estimation and Inference of Heterogeneous Treatment Effects using Random Forests
    Wager, Stefan
    Athey, Susan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) : 1228 - 1242
  • [46] On the estimation of quantile treatment effects using a semiparametric propensity score
    Zhan, Mingfeng
    Yan, Karen X.
    [J]. ECONOMETRIC REVIEWS, 2024, 43 (09) : 752 - 773
  • [47] Marginal MAP estimation using Markov chain Monte Carlo
    Robert, CP
    Doucet, A
    Godsill, SJ
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1753 - 1756
  • [48] Estimation of nonlinear models with mismeasured regressors using marginal information
    Hu, Yingyao
    Ridder, Geert
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2012, 27 (03) : 347 - 385
  • [49] Estimation of conditional and marginal odds ratios using the prognostic score
    Hajage, David
    De Rycke, Yann
    Chauvet, Guillaume
    Tubach, Florence
    [J]. STATISTICS IN MEDICINE, 2017, 36 (04) : 687 - 716
  • [50] Estimation of Locational Marginal Pricing Using Hybrid Optimization Algorithms
    Bhoopathi, M.
    Palanivel, P.
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (01): : 143 - 159