共 27 条
Early decrease in apurinic/apyrimidinic endonuclease is followed by DNA fragmentation after cold injury-induced brain trauma in mice
被引:42
|作者:
Morita-Fujimura, Y
Fujimura, M
Kawase, M
Chan, PH
机构:
[1] Stanford Univ, Sch Med, Dept Neurosurg, Palo Alto, CA 94304 USA
[2] Stanford Univ, Sch Med, Dept Neurol & Neurol Sci, Palo Alto, CA 94304 USA
[3] Stanford Univ, Sch Med, Program Neurosci, Palo Alto, CA 94304 USA
关键词:
APE/Ref-1;
DNA base excision repair;
apoptosis;
cryogenic brain trauma;
D O I:
10.1016/S0306-4522(99)00231-6
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Apurinic/apyrimidinic endonuclease, a multifunctional protein in the DNA base excision repair pathway, plays a central role in repairing DNA damage caused by reactive oxygen species. We examined protein expression of apurinic/apyrimidinic endonuclease before and after cold injury-induced brain trauma in mice, where we have previously shown reactive oxygen species to participate. Immunohistochemistry showed the nuclear expression of apurinic/apyrimidinic endonuclease in the entire region of control brains. One hour after cold injury-induced brain trauma, nuclear immunoreactivity was predominantly decreased in the inner boundary of the lesion, whereas there was a slight increase in the outer boundary area. Four hours after cold injury-induced brain trauma, nuclear immunoreactivity was almost absent in the entire lesion, and remained so until 24 h. At this time, a marked increase in apurinic/apyrimidinic endonuclease immunoreactivity was seen in the outer boundary zone. Western blot analysis of the sample from the non-ischemic area showed a characteristic 37,000 mol. wt band, which decreased markedly 24 h after cold injury-induced brain trauma. A time-dependent increase in DNA fragmentation was also observed after cold injury-induced brain trauma. Our data provide the first evidence that apurinic/apyrimidinic endonuclease decreased rapidly in the lesion after cold injury-induced brain trauma, whereas it was significantly increased at the outer boundary zone. Although further examination is necessary to elucidate the direct relationship between apurinic/apyrimidinic endonuclease alteration and the pathogenesis of cold injury-induced brain trauma, our results suggest the possibility that an early decrease in apurinic/apyrimidinic endonuclease and failure of the DNA repair mechanism may contribute to DNA-damaged neuronal cell death after cold injury-induced brain trauma. (C) 1999 IBRO. Published by Elsevier Science Ltd.
引用
收藏
页码:1465 / 1473
页数:9
相关论文