Simpson's Rule and Hermite-Hadamard Inequality for Non-Convex Functions

被引:3
|
作者
Simic, Slavko [1 ,2 ]
Bin-Mohsin, Bandar [3 ]
机构
[1] Ton Duc Thang Univ, Nonlinear Anal Res Grp, Ho Chi Minh City 758307, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 758307, Vietnam
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
hermite-hadamard integral inequality; twice differentiable functions; convex functions;
D O I
10.3390/math8081248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give a variant of the Hermite-Hadamard integral inequality for twice differentiable functions. It represents an improvement of this inequality in the case of convex/concave functions. Sharp two-sided inequalities for Simpson's rule are also proven along with several extensions.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s,m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 499 - 510
  • [42] FRACTIONAL HERMITE-HADAMARD INEQUALITY AND ERROR ESTIMATES FOR SIMPSON'S FORMULA THROUGH CONVEXITY WITH RESPECT TO A PAIR OF FUNCTIONS
    Ali, Muhammad Aamir
    Soontharanon, Jarunee
    Budak, Huseyin
    Sitthiwirattham, Thanin
    Feckan, Michal
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 553 - 568
  • [43] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Kiris, Mehmet Eyup
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 491 - 501
  • [44] SOME ESTIMATES ON THE HERMITE-HADAMARD INEQUALITY THROUGH GEOMETRICALLY QUASI-CONVEX FUNCTIONS
    Latif, M. A.
    Dragomir, Sever S.
    Momoniat, E.
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (02) : 933 - 946
  • [45] A NOTE ON CHARACTERIZATION OF h-CONVEX FUNCTIONS VIA HERMITE-HADAMARD TYPE INEQUALITY
    Delavar, M. Rostamian
    Dragomir, S. S.
    De La Sen, M.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (02): : 28 - 36
  • [46] SOME NEW BOUNDS FOR TWO MAPPINGS RELATED TO THE HERMITE-HADAMARD INEQUALITY FOR CONVEX FUNCTIONS
    Dragomir, S. S.
    Gomm, I.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (02): : 271 - 278
  • [47] SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS
    Alomari, Mohammad W.
    Darus, Maslina
    Kirmaci, Ugur S.
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1643 - 1652
  • [48] The Hermite-Hadamard Inequality for s-Convex Functions in the Second Sense via Conformable Fractional Integrals
    Set, Erhan
    Gozpinar, Abdurrahman
    Mumcu, Ilker
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (01): : 37 - 50
  • [49] Hermite-Hadamard Inequalities for Harmonic s,m-Convex Functions
    Xu, Jian Zhong
    Raza, Umar
    Javed, Muhammad Waqas
    Hussain, Zaryab
    Wang, Shaohui
    Mathematical Problems in Engineering, 2020, 2020
  • [50] On some Hermite-Hadamard type inequalities for (s, QC)-convex functions
    Wu, Ying
    Qi, Feng
    SPRINGERPLUS, 2016, 5