Poisson equation on complete manifolds

被引:17
|
作者
Munteanu, Ovidiu [1 ]
Sung, Chiung-Jue Anna [2 ]
Wang, Jiaping [3 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06268 USA
[2] Natl Thing Hua Univ, Dept Math, Hsinchu, Taiwan
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Poisson equation; Green's function; Bottom spectrum; Steady Ricci solitons; POINCARE-LELONG EQUATION; GREEN-FUNCTIONS; CURVATURE; LAPLACIAN; GEOMETRY; SPACES;
D O I
10.1016/j.aim.2019.03.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop heat kernel and Green's function estimates for manifolds with positive bottom spectrum. The results are then used to establish existence and sharp estimates of the solution to the Poisson equation on such manifolds with Ricci curvature bounded below. As an application, we show that the curvature of a steady gradient Ricci soliton must decay exponentially if it decays faster than linear and the potential function is bounded above. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 145
页数:65
相关论文
共 50 条
  • [21] Heat equation for harmonic maps of the compactification of complete manifolds
    Dong Pyo Chi
    Hyeong In Choi
    Hyun Jung Kim
    The Journal of Geometric Analysis, 1998, 8 (4): : 515 - 531
  • [22] Gradient estimates for a nonlinear diffusion equation on complete manifolds
    Jiaxian Wu
    Qihua Ruan
    Yihu Yang
    Chinese Annals of Mathematics, Series B, 2015, 36 : 1011 - 1018
  • [23] Lionville Theorem for Lichnerowicz Equation on Complete Noncompact Manifolds
    Zhao, Liang
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2014, 57 (01): : 163 - 172
  • [24] On a Q-Curvature Equation on Complete Riemannian Manifolds
    Maliki, Youssef
    ADVANCED NONLINEAR STUDIES, 2010, 10 (01) : 195 - 217
  • [25] Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds
    Wu, Jiaxian
    Ruan, Qihua
    Yang, Yihu
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (06) : 1011 - 1018
  • [26] Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds
    Arosio, Leandro
    Bracci, Filippo
    ANALYSIS AND MATHEMATICAL PHYSICS, 2011, 1 (04) : 337 - 350
  • [27] Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds
    Jiaxian WU
    Qihua RUAN
    Yihu YANG
    ChineseAnnalsofMathematics(SeriesB), 2015, 36 (06) : 1011 - 1018
  • [28] Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds
    Wu Jiayong
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (01): : 68 - 79
  • [29] Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds
    Leandro Arosio
    Filippo Bracci
    Analysis and Mathematical Physics, 2011, 1 : 337 - 350
  • [30] THE HEAT-EQUATION AND HARMONIC MAPS OF COMPLETE MANIFOLDS
    LI, P
    TAM, LF
    INVENTIONES MATHEMATICAE, 1991, 105 (01) : 1 - 46