Bayesian nonparametric clustering as a community detection problem

被引:2
|
作者
Tonellato, Stefano F. [1 ]
机构
[1] Ca Foscari Univ Venice, Dept Econ, Cannaregio 873, I-30121 Venice, Italy
关键词
Dirichlet process priors; Mixture models; Community detection; Entropy; Clustering uncertainty; MONTE-CARLO METHODS; MIXTURE MODEL; DENSITY-ESTIMATION; SAMPLING METHODS; RANDOM-WALKS; CLASSIFICATION; SELECTION; NUMBER;
D O I
10.1016/j.csda.2020.107044
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A wide class of Bayesian nonparametric priors leads to the representation of the distribution of the observable variables as a mixture density with an infinite number of components. Such a representation induces a clustering structure in the data. However, due to label switching, cluster identification is not straightforward a posteriori and some post-processing of the MCMC output is usually required. Alternatively, observations can be mapped on a weighted undirected graph, where each node represents a sample item and edge weights are given by the posterior pairwise similarities. It is shown how, after building a particular random walk on such a graph, it is possible to apply a community detection algorithm, known as map equation, leading to the minimisation of the expected description length of the partition. A relevant feature of this method is that it allows for the quantification of the posterior uncertainty of the classification. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Bayesian nonparametric approach for clustering functional trajectories over time
    Liang, Mingrui
    Koslovsky, Matthew D.
    Hebert, Emily T.
    Kendzor, Darla E.
    Vannucci, Marina
    STATISTICS AND COMPUTING, 2024, 34 (06)
  • [22] Consensus Variational and Monte Carlo Algorithms for Bayesian Nonparametric Clustering
    Ni, Yang
    Jones, David
    Wang, Zeya
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 204 - 209
  • [23] Bayesian Nonparametric Clustering of Patients with Advanced Cancer on Anxiety and Depression
    Li, Yuelin
    Rosenfeld, Barry
    Pessin, Hayley
    Breitbart, William
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 674 - 678
  • [24] Peripheral Nerve Segmentation Using Nonparametric Bayesian Hierarchical Clustering
    Giraldo, Juan J.
    Alvarez, Mauricio A.
    Orozco, Alvaro A.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 3101 - 3104
  • [25] A Bayesian Nonparametric Approach for Comparing Clustering Structures in EST Libraries
    Lijoi, Antonio
    Mena, Ramses H.
    Prunster, Igor
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2008, 15 (10) : 1315 - 1327
  • [26] Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts
    Nguyen, Vu
    Phung, Dinh
    Nguyen, XuanLong
    Venkatesh, Svetha
    Bui, Hung Hai
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [27] DNB: A Joint Learning Framework for Deep Bayesian Nonparametric Clustering
    Wang, Zeya
    Ni, Yang
    Jing, Baoyu
    Wang, Deqing
    Zhang, Hao
    Xing, Eric
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7610 - 7620
  • [28] Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza
    Cybis, Gabriela B.
    Sinsheimer, Janet S.
    Bedford, Trevor
    Rambaut, Andrew
    Lemey, Philippe
    Suchard, Marc A.
    STATISTICS IN MEDICINE, 2018, 37 (02) : 195 - 206
  • [29] Nonparametric Bayesian clustering to detect bipolar methylated genomic loci
    Xiaowei Wu
    Ming-an Sun
    Hongxiao Zhu
    Hehuang Xie
    BMC Bioinformatics, 16
  • [30] A Nonparametric Bayesian Dictionary Learning Algorithm with Clustering Structure Similarity
    Dong Daoguang
    Rui Guosheng
    Tian Wenbiao
    Zhang Yang
    Liu Ge
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (11) : 2765 - 2772