Bayesian nonparametric clustering as a community detection problem

被引:2
|
作者
Tonellato, Stefano F. [1 ]
机构
[1] Ca Foscari Univ Venice, Dept Econ, Cannaregio 873, I-30121 Venice, Italy
关键词
Dirichlet process priors; Mixture models; Community detection; Entropy; Clustering uncertainty; MONTE-CARLO METHODS; MIXTURE MODEL; DENSITY-ESTIMATION; SAMPLING METHODS; RANDOM-WALKS; CLASSIFICATION; SELECTION; NUMBER;
D O I
10.1016/j.csda.2020.107044
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A wide class of Bayesian nonparametric priors leads to the representation of the distribution of the observable variables as a mixture density with an infinite number of components. Such a representation induces a clustering structure in the data. However, due to label switching, cluster identification is not straightforward a posteriori and some post-processing of the MCMC output is usually required. Alternatively, observations can be mapped on a weighted undirected graph, where each node represents a sample item and edge weights are given by the posterior pairwise similarities. It is shown how, after building a particular random walk on such a graph, it is possible to apply a community detection algorithm, known as map equation, leading to the minimisation of the expected description length of the partition. A relevant feature of this method is that it allows for the quantification of the posterior uncertainty of the classification. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bayesian Nonparametric Models for Community Detection
    Guo, Jiqiang
    Nordman, Daniel J.
    Wilson, Alyson G.
    TECHNOMETRICS, 2013, 55 (04) : 390 - 402
  • [2] Malware Detection Using Nonparametric Bayesian Clustering and Classification Techniques
    Kao, Yimin
    Reich, Brian
    Storlie, Curtis
    Anderson, Blake
    TECHNOMETRICS, 2015, 57 (04) : 535 - 546
  • [3] Nonparametric Bayesian Clustering Ensembles
    Wang, Pu
    Domeniconi, Carlotta
    Laskey, Kathryn Blackmond
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2010, 6323 : 435 - 450
  • [4] Discriminative Bayesian Nonparametric Clustering
    Nguyen, Vu
    Phung, Dinh
    Le, Trung
    Bui, Hung
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2550 - 2556
  • [5] Streaming clustering with Bayesian nonparametric models
    Viet Huynh
    Dinh Phung
    NEUROCOMPUTING, 2017, 258 : 52 - 62
  • [6] Scalable Bayesian Nonparametric Clustering and Classification
    Ni, Yang
    Muller, Peter
    Diesendruck, Maurice
    Williamson, Sinead
    Zhu, Yitan
    Ji, Yuan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (01) : 53 - 65
  • [7] An incremental nonparametric Bayesian clustering-based traversable region detection method
    Honggu Lee
    Kiho Kwak
    Sungho Jo
    Autonomous Robots, 2017, 41 : 795 - 810
  • [8] An incremental nonparametric Bayesian clustering-based traversable region detection method
    Lee, Honggu
    Kwak, Kiho
    Jo, Sungho
    AUTONOMOUS ROBOTS, 2017, 41 (04) : 795 - 810
  • [9] Bayesian Complex Network Community Detection Using Nonparametric Topic Model
    Zhu, Ruimin
    Jiang, Wenxin
    COMPLEX NETWORKS AND THEIR APPLICATIONS VII, VOL 1, 2019, 812 : 280 - 291
  • [10] Bayesian nonparametric clustering for large data sets
    Daiane Aparecida Zuanetti
    Peter Müller
    Yitan Zhu
    Shengjie Yang
    Yuan Ji
    Statistics and Computing, 2019, 29 : 203 - 215