Time-Domain Single-Source Integral Equations for Analyzing Scattering From Homogeneous Penetrable Objects
被引:4
|
作者:
Valdes, Felipe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USAUniv Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
Valdes, Felipe
[1
]
Andriulli, Francesco P.
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Natl Super Telecommun Bretagne TELECOM Bret, Microwave Dept, F-29238 Brest, FranceUniv Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
Andriulli, Francesco P.
[2
]
Bagci, Hakan
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi ArabiaUniv Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
Bagci, Hakan
[3
]
Michielssen, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USAUniv Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
Michielssen, Eric
[1
]
机构:
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Ecole Natl Super Telecommun Bretagne TELECOM Bret, Microwave Dept, F-29238 Brest, France
[3] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
Marching on in time (MOT);
numerical methods;
single-source integral equations;
time-domain integral equations (TDIEs);
ELECTROMAGNETIC SCATTERING;
TRANSIENT SCATTERING;
D O I:
10.1109/TAP.2012.2227655
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia et al. alongside the high-order divergence- and quasi curl-conforming (DQCC) basis functions of Valdes et al. The combination of these two sets allows for a well-conditioned mapping from div- to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme.