Hilbert-Schmidt Hankel Operators over Complete Reinhardt Domains

被引:4
|
作者
Le, Trieu [1 ]
机构
[1] Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USA
关键词
Bergman space; Hankel operator; Hilbert-Schmidt operator; partial derivative-Neumann operator; WEIGHTED BERGMAN SPACES; UNIT BALL;
D O I
10.1007/s00020-013-2103-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be an arbitrary bounded complete Reinhardt domain in . We show that for , if a Hankel operator with an anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space , then it must equal zero. This fact has previously been proved only for strongly pseudoconvex domains and for a certain class of pseudoconvex domains.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 50 条