Case-Encapsulated Triboelectric Nanogenerator for Harvesting Energy from Reciprocating Sliding Motion

被引:132
|
作者
Jing, Qingshen [1 ,2 ]
Zhu, Guang [1 ]
Bai, Peng [1 ]
Xie, Yannan [1 ]
Chen, Jun [1 ]
Han, Ray P. S. [2 ]
Wang, Zhong Lin [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
关键词
reciprocating motion; energy harvesting; triboelectric nanogenerators; casing; self-powered; POWER-GENERATION; SENSOR; VIBRATION; DRIVEN;
D O I
10.1021/nn500694y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reciprocating motion is a widely existing form of mechanical motion in natural environment. In this work we reported a case-encapsulated triboelectric nanogenerator (cTENG) based on sliding electrification to convert reciprocating motion into electric energy. Patterned with multiple sets of grating electrodes and lubricated with polytetrafluoroethylene (PTFE) nanoparticles, the cTENG exported an average effective output power of 12.2 mW over 140 k Omega external load at a sliding velocity of 1 m/s, in corresponding to a power density of 1.36 W/m(2). The sliding motion can be induced by direct-applied forces as well as inertia forces, enabling the applicability of the cTENG in addressing ambient vibration motions that feature large amplitude and low frequency. The cTENG was demonstrated to effectively harvest energy from human body motions and wavy water surface, indicating promising prospects of the cTENG in applications such as portable and stand-alone self-powered electronics.
引用
收藏
页码:3836 / 3842
页数:7
相关论文
共 50 条
  • [31] Triboelectric nanogenerator based wearable energy harvesting devices
    Ding Ya-Fei
    Chen Xiang-Yu
    ACTA PHYSICA SINICA, 2020, 69 (17)
  • [32] A generalized model for a triboelectric nanogenerator energy harvesting system
    Sun, Bobo
    Guo, Xin
    Zhang, Yuyang
    Wang, Zhong Lin
    Shao, Jiajia
    NANO ENERGY, 2024, 126
  • [33] Nonlinear Dynamics of Wind Energy Harvesting Triboelectric Nanogenerator
    Mo, Shuai
    Zeng, Yanjun
    Wang, Zhen
    Zhang, Yingxin
    Zhou, Yuansheng
    Zhang, Jielu
    Zhang, Wei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2025, 13 (04)
  • [34] Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator
    Yang, Jin
    Chen, Jun
    Yang, Ya
    Zhang, Hulin
    Yang, Weiqing
    Bai, Peng
    Su, Yuanjie
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2014, 4 (06)
  • [35] Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy
    Ting Quan
    Yingchun Wu
    Ya Yang
    Nano Research, 2015, 8 : 3272 - 3280
  • [36] Soft Tubular Triboelectric Nanogenerator for Biomechanical Energy Harvesting
    Liu, Guo Xu
    Li, Wen Jian
    Liu, Wen Bo
    Bu, Tian Zhao
    Guo, Tong
    Jiang, Dong Dong
    Zhao, Jun Qing
    Xi, Feng Ben
    Hu, Wei Guo
    Zhang, Chi
    ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (12):
  • [37] Texture and sliding motion sensation with a triboelectric-nanogenerator transducer
    Liu, Weihua
    Zhang, Chen
    Lin, Haisheng
    Qu, Weimiao
    Li, Xin
    Wang, Xiaoli
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 256 : 89 - 94
  • [38] Sliding-impact bistable triboelectric nanogenerator for enhancing energy harvesting from low-frequency intrawell oscillation
    Tan, Dongguo
    Zhou, Jiaxi
    Wang, Kai
    Ouyang, Huajiang
    Zhao, Huai
    Xu, Daolin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 184
  • [39] Skin-Contact Triboelectric Nanogenerator for Energy Harvesting and Motion Sensing: Principles, Challenges, and Perspectives
    Nazar, Ali Matin
    Mohsenian, Reza
    Rayegani, Arash
    Shadfar, Mohammadamin
    Jiao, Pengcheng
    BIOSENSORS-BASEL, 2023, 13 (09):
  • [40] A Shared-Electrode and Nested-Tube Structure Triboelectric Nanogenerator for Motion Energy Harvesting
    Tian, Zhumei
    Shao, Guicheng
    Zhang, Qiong
    Geng, Yanan
    Chen, Xi
    MICROMACHINES, 2019, 10 (10)