Embedding of topological dynamical systems into symbolic dynamical systems: A necessary and sufficient condition

被引:9
|
作者
Wang, YG [1 ]
Wei, G [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
embedding of topological dynamical systems; epsilon-expansive mapping; symbolic dynamical system;
D O I
10.1016/S0034-4877(06)80032-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Embedding of a topological dynamical system into another is a weaker condition than topological conjugacy between the two topological dynamical systems. In 2000, under the assumption of is an element of-expansive, compact and totally disconnected systems, Shigeo Akashi found a sufficient condition for embedding a topological dynamical system (X, d, f) into a symbolic dynamical system. The purpose of this paper is to present and prove a necessary and sufficient condition that determines exactly which of the topological dynamical systems can be embedded into symbolic dynamical systems and which ones cannot be. Particularly, Shigeo Akashi's result becomes a special case of this new sufficient condition.
引用
收藏
页码:457 / 461
页数:5
相关论文
共 50 条
  • [31] A SUFFICIENT TEST FOR ISOMORPHISM OF DYNAMICAL SYSTEMS
    GRABAR, MI
    DOKLADY AKADEMII NAUK SSSR, 1956, 109 (03): : 431 - 433
  • [32] Sufficient conditions for equilibrium in dynamical systems
    Woodbury, G
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (01) : 89 - 92
  • [33] Symbolic extensions and smooth dynamical systems
    Downarowicz, T
    Newhouse, S
    INVENTIONES MATHEMATICAE, 2005, 160 (03) : 453 - 499
  • [34] Characteristic measures of symbolic dynamical systems
    Frisch, Joshua
    Tamuz, Omer
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (05) : 1655 - 1661
  • [35] Symbolic extensions and smooth dynamical systems
    Tomasz Downarowicz
    Sheldon Newhouse
    Inventiones mathematicae, 2005, 160 : 453 - 499
  • [36] Decidability and universality in symbolic dynamical systems
    Delvenne, Jean-Charles
    Kurka, Petr
    Blondel, Vincent
    FUNDAMENTA INFORMATICAE, 2006, 74 (04) : 463 - 490
  • [37] Notes on Symbolic Representations of Dynamical Systems
    Guan, Junbiao
    JOURNAL OF CELLULAR AUTOMATA, 2012, 7 (03) : 199 - 206
  • [38] Prediction of dynamical systems by symbolic regression
    Quade, Markus
    Abel, Markus
    Shafi, Kamran
    Niven, Robert K.
    Noack, Bernd R.
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [39] Computational universality in symbolic dynamical systems
    Delvenne, JC
    Kurka, P
    Blondel, VD
    MACHINES, COMPUTATIONS, AND UNIVERSALITY, 2005, 3354 : 104 - 115
  • [40] Embedding observers for polynomial dynamical systems
    Gerbet, Daniel
    Roebenack, Klaus
    AT-AUTOMATISIERUNGSTECHNIK, 2023, 71 (08) : 646 - 658