MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

被引:27
|
作者
Errard, J. [1 ,2 ]
Ade, P. A. R. [3 ]
Akiba, Y. [4 ]
Arnold, K. [5 ]
Atlas, M. [5 ]
Baccigalupi, C. [6 ]
Barron, D. [5 ]
Boettger, D. [7 ]
Borrill, J. [1 ,2 ]
Chapman, S. [8 ]
Chinone, Y. [4 ,9 ]
Cukierman, A. [9 ]
Delabrouille, J. [10 ]
Dobbs, M. [11 ]
Ducout, A. [12 ]
Elleflot, T. [5 ]
Fabbian, G. [6 ]
Feng, C. [13 ]
Feeney, S. [12 ]
Gilbert, A. [11 ]
Goeckner-Wald, N. [9 ]
Halverson, N. W. [14 ,15 ,16 ]
Hasegawa, M. [4 ,17 ]
Hattori, K. [4 ]
Hazumi, M. [4 ,17 ,18 ]
Hill, C. [9 ]
Holzapfel, W. L. [9 ]
Hori, Y. [9 ]
Inoue, Y. [4 ]
Jaehnig, G. C. [14 ,16 ]
Jaffe, A. H. [12 ]
Jeong, O. [9 ]
Katayama, N. [18 ]
Kaufman, J. [5 ]
Keating, B. [5 ]
Kermish, Z. [19 ]
Keskitalo, R. [2 ]
Kisner, T. [1 ,2 ]
Le Jeune, M. [10 ]
Lee, A. T. [9 ,20 ]
Leitch, E. M. [21 ,22 ]
Leon, D. [5 ]
Linder, E. [20 ]
Matsuda, F. [5 ]
Matsumura, T. [23 ]
Miller, N. J. [24 ]
Myers, M. J. [9 ]
Navaroli, M. [5 ]
Nishino, H. [18 ]
Okamura, T. [4 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA
[3] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, S Glam, Wales
[4] High Energy Accelerator Org KEK, Tsukuba, Ibaraki 3050801, Japan
[5] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[6] Int Sch Adv Studies SISSA, I-34014 Trieste, Italy
[7] Pontificia Univ Catolica Chile, Dept Astron, Santiago, Chile
[8] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[9] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[10] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Obs Paris, Paris, France
[11] McGill Univ, Dept Phys, Montreal, PQ H3A 0G4, Canada
[12] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[13] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA
[14] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA
[15] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
[16] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[17] Grad Univ Adv Studies, Miura Dist, Kanagawa 2400115, Japan
[18] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
[19] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[20] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA
[21] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[22] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[23] JAXA, Chofu, Tokyo, Japan
[24] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA
[25] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[26] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[27] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA
[28] Osaka Univ, Toyonaka, Osaka 5600043, Japan
来源
ASTROPHYSICAL JOURNAL | 2015年 / 809卷 / 01期
基金
美国国家科学基金会;
关键词
atmospheric effects; methods: data analysis; methods: observational; MICROWAVE BACKGROUND EXPERIMENTS; COMPONENT SEPARATION; FLUCTUATIONS; POLARIZATION; TURBULENCE; SITES; NOISE;
D O I
10.1088/0004-637X/809/1/63
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Ground-based optical observations of asteroids
    Cellino, Alberto
    [J]. HIGHLIGHTS OF ASTRONOMY, VOL 13, 2005, 13 : 752 - 757
  • [32] TRACE and ground-based observations of microflares
    Cauzzi, G
    Falchi, A
    Falciani, R
    Smaldone, LA
    Shine, R
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-GEOPHYSICS AND SPACE PHYSICS, 2002, 25 (5-6): : 735 - 740
  • [33] INFERENCE OF ATMOSPHERIC TEMPERATURE PROFILES FROM GROUND-BASED MEASUREMENTS OF MICROWAVE EMISSION FROM ATMOSPHERIC OXYGEN
    MINER, GF
    THORNTON, DD
    WELCH, WJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (06): : 975 - +
  • [34] THE EFFECTS OF ATMOSPHERIC MODELING COVARIANCE ON GROUND-BASED HYPERSPECTRAL MEASUREMENTS OF SURFACE REFLECTANCE
    Qamar, Farid
    Gomez-Fonseca, Angie S.
    Dobler, Gregory
    [J]. 2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,
  • [35] Spatiotemporal characteristics of the atmospheric AOD in the Gobi desert according to data of the ground-based observations
    A. S. Zayakhanov
    G. S. Zhamsueva
    S. A. Naguslaev
    V. V. Tsydypov
    A. A. Ayurzhanaev
    S. M. Sakerin
    D. M. Kabanov
    D. Azzaya
    D. Oyunchimeg
    [J]. Atmospheric and Oceanic Optics, 2012, 25 (5) : 346 - 354
  • [36] Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations
    Turner, Emma C.
    Withington, Stafford
    Newnham, David A.
    Wadhams, Peter
    Jones, Anna E.
    Clancy, Robin
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (11) : 5461 - 5485
  • [37] GROUND-BASED MICROWAVE RADIOMETRIC OBSERVATIONS OF THE TEMPORAL VARIATION OF ATMOSPHERIC GEOPOTENTIAL HEIGHT AND THICKNESS
    CIOTTI, P
    WESTWATER, ER
    DECKER, MT
    BEDARD, AJ
    STANKOV, BB
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1987, 25 (05): : 600 - 615
  • [38] Spatiotemporal Characteristics of the Atmospheric AOD in the Gobi Desert according to Data of the Ground-Based Observations
    Zayakhanov, A. S.
    Zhamsueva, G. S.
    Naguslaev, S. A.
    Tsydypov, V. V.
    Ayurzhanaev, A. A.
    Sakerin, S. M.
    Kabanov, D. M.
    Azzaya, D.
    Oyunchimeg, D.
    [J]. ATMOSPHERIC AND OCEANIC OPTICS, 2012, 25 (05) : 346 - 354
  • [39] GROUND-BASED OBSERVATIONS OF ATMOSPHERIC RADIATION AT 5, 10, 21, 35, AND 94 GHZ
    MATZLER, C
    [J]. RADIO SCIENCE, 1992, 27 (03) : 403 - 415
  • [40] Ground-based microwave radiometry and long-term observations of atmospheric water vapor
    Elgered, G
    Jarlemark, POJ
    [J]. RADIO SCIENCE, 1998, 33 (03) : 707 - 717