Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls

被引:10
|
作者
Ikoma, Norihisa [1 ]
Ishii, Hitoshi [2 ,3 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
[2] Waseda Univ, Fac Educ & Integrated Arts & Sci, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
关键词
DIRICHLET PROBLEM; PRINCIPAL EIGENVALUES; EQUATIONS; OPERATORS; BIFURCATION;
D O I
10.1016/j.anihpc.2012.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its corresponding eigenfunction. (c) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:783 / 812
页数:30
相关论文
共 50 条
  • [31] The Cauchy problem for second-order elliptic systems on the plane
    Arbuzov, EV
    DOKLADY MATHEMATICS, 2003, 67 (01) : 74 - 77
  • [32] On the Dirichlet problem for not strongly elliptic second-order equations
    Bagapsh, A. O.
    Mazalov, M. Ya.
    Fedorovskiy, K. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2022, 77 (02) : 372 - 374
  • [33] The Cauchy Problem for Second-Order Elliptic Systems on the Plane
    E. V. Arbuzov
    Siberian Mathematical Journal, 2003, 44 : 1 - 16
  • [34] The Cauchy problem for second-order elliptic systems on the plane
    Arbuzov, EV
    SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (01) : 1 - 16
  • [35] ON A NONLINEAR ELLIPTIC EIGENVALUE PROBLEM
    LI, YQ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (01) : 151 - 164
  • [36] On a nonlinear elliptic eigenvalue problem
    Chen, SW
    Li, SJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (02) : 691 - 698
  • [37] NONLINEAR ELLIPTIC EIGENVALUE PROBLEM
    BUDDEN, PJ
    NORBURY, J
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1979, 24 (01): : 9 - 33
  • [38] Regularity and uniqueness results for second-order nonlinear eigenvalue problems
    Lai, Baishun
    Luo, Qing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 18 : 86 - 99
  • [39] An Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
    Yuan, Yongxin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [40] The Bargmann System Related to the Second-Order Matrix Eigenvalue Problem
    Yue, Fengtong
    Yuan, Shujuan
    Ma, Xinghua
    Cui, Yuhuan
    Qu, Jingguo
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 165 - 170