Polynomial Spectral Collocation Method for Space Fractional Advection-Diffusion Equation

被引:51
|
作者
Tian, WenYi [1 ]
Deng, Weihua [1 ]
Wu, Yujiang [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
FINITE-DIFFERENCE APPROXIMATIONS; RANDOM-WALK;
D O I
10.1002/num.21822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses the spectral collocation method for numerically solving nonlocal problems: one-dimensional space fractional advection-diffusion equation; and two-dimensional linear/nonlinear space fractional advection-diffusion equation. The differentiation matrixes of the left and right Riemann-Liouville and Caputo fractional derivatives are derived for any collocation points within any given bounded interval. Several numerical examples with different boundary conditions are computed to verify the efficiency of the numerical schemes and confirm the exponential convergence; the physical simulations for Lévy-Feller advection-diffusion equation and space fractional Fokker-Planck equation with initial δ-peak and reflecting boundary conditions are performed; and the eigenvalue distributions of the iterative matrix for a variety of systems are displayed to illustrate the stabilities of the numerical schemes in more general cases. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 514-535, 2014 Copyright © 2013 Wiley Periodicals, Inc.
引用
收藏
页码:514 / 535
页数:22
相关论文
共 50 条
  • [1] Legendre collocation method for new generalized fractional advection-diffusion equation
    Kumar, Sandeep
    Kumar, Kamlesh
    Pandey, Rajesh K.
    Xu, Yufeng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (9-10) : 1050 - 1072
  • [2] Numerical solution of Advection-Diffusion Equation using Graph theoretic polynomial collocation method
    Kumbinarasaiah, S.
    Nirmala, A. N.
    [J]. RESULTS IN CONTROL AND OPTIMIZATION, 2023, 12
  • [3] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    [J]. MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [4] Numerical Solution of Advection-Diffusion Equation of Fractional Order Using Chebyshev Collocation Method
    Ali Shah, Farman
    Boulila, Wadii
    Koubaa, Anis
    Mlaiki, Nabil
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [5] On the effective method for the space-fractional advection-diffusion equation by the Galerkin method
    Bin Jebreen, Haifa
    Wang, Hongzhou
    [J]. AIMS MATHEMATICS, 2024, 9 (09): : 24143 - 24162
  • [6] An implicit wavelet collocation method for variable coefficients space fractional advection-diffusion equations
    Liu, Can
    Yu, Zhe
    Zhang, Xinming
    Wu, Boying
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 177 : 93 - 110
  • [7] Lattice Boltzmann method for the fractional advection-diffusion equation
    Zhou, J. G.
    Haygarth, P. M.
    Withers, P. J. A.
    Macleod, C. J. A.
    Falloon, P. D.
    Beven, K. J.
    Ockenden, M. C.
    Forber, K. J.
    Hollaway, M. J.
    Evans, R.
    Collins, A. L.
    Hiscock, K. M.
    Wearing, C.
    Kahana, R.
    Velez, M. L. Villamizar
    [J]. PHYSICAL REVIEW E, 2016, 93 (04)
  • [8] Numerical Method for Fractional Advection-Diffusion Equation with Heredity
    Pimenov V.G.
    [J]. Journal of Mathematical Sciences, 2018, 230 (5) : 737 - 741
  • [9] Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space–time fractional advection-diffusion equation
    H. Safdari
    Y. Esmaeelzade Aghdam
    J. F. Gómez-Aguilar
    [J]. Engineering with Computers, 2022, 38 : 1409 - 1420
  • [10] A spectral embedding method applied to the advection-diffusion equation
    Elghaoui, M
    Pasquetti, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (02) : 464 - 476