Legendre collocation method for new generalized fractional advection-diffusion equation

被引:4
|
作者
Kumar, Sandeep [1 ,2 ]
Kumar, Kamlesh [3 ]
Pandey, Rajesh K. [1 ]
Xu, Yufeng [4 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Manipal Univ Jaipur, Dept Math & Stat, Jaipur, Rajsthan, India
[3] Manav Rachna Univ, Dept Sci Math, Faridabad, Haryana, India
[4] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha, Hunan, Peoples R China
关键词
Generalized fractional derivatives; fractional advection-diffusion equation; collocation method; error analysis; convergence analysis; FINITE-DIFFERENCE METHOD; TIME; CONVERGENCE; DISPERSION; TRANSPORT; SYSTEMS;
D O I
10.1080/00207160.2024.2305640
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the numerical method for solving a class of generalized fractional advection-diffusion equation (GFADE) is considered. The fractional derivative involving scale and weight factors is imposed for the temporal derivative and is analogous to the Caputo fractional derivative following an integration-after-differentiation composition. It covers many popular fractional derivatives by fixing different weights $ w(t) $ w(t) and scale functions $ z(t) $ z(t) inside. The numerical solution of such GFADE is derived via a collocation method, where conventional Legendre polynomials are implemented. Convergence and error analysis of polynomial expansions are studied theoretically. Numerical examples are considered with different boundary conditions to confirm the theoretical findings. By comparing the above examples with those from existing literature, we find that our proposed numerical method is simple, stable and easy to implement.
引用
收藏
页码:1050 / 1072
页数:23
相关论文
共 50 条
  • [1] Polynomial Spectral Collocation Method for Space Fractional Advection-Diffusion Equation
    Tian, WenYi
    Deng, Weihua
    Wu, Yujiang
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 514 - 535
  • [2] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    [J]. MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [3] Numerical Solution of Advection-Diffusion Equation of Fractional Order Using Chebyshev Collocation Method
    Ali Shah, Farman
    Boulila, Wadii
    Koubaa, Anis
    Mlaiki, Nabil
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [4] Lattice Boltzmann method for the fractional advection-diffusion equation
    Zhou, J. G.
    Haygarth, P. M.
    Withers, P. J. A.
    Macleod, C. J. A.
    Falloon, P. D.
    Beven, K. J.
    Ockenden, M. C.
    Forber, K. J.
    Hollaway, M. J.
    Evans, R.
    Collins, A. L.
    Hiscock, K. M.
    Wearing, C.
    Kahana, R.
    Velez, M. L. Villamizar
    [J]. PHYSICAL REVIEW E, 2016, 93 (04)
  • [5] Numerical Method for Fractional Advection-Diffusion Equation with Heredity
    Pimenov V.G.
    [J]. Journal of Mathematical Sciences, 2018, 230 (5) : 737 - 741
  • [6] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    [J]. ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [7] On a modification of the legendre collocation method for solving fractional diffusion equation
    Jaleb, H.
    Adibi, H.
    [J]. Journal of Computational and Theoretical Nanoscience, 2016, 13 (08) : 5513 - 5518
  • [8] Numerical simulation of fractional advection-diffusion equation: A method to anomalous diffusion
    Xia, Y.
    Wu, J. C.
    [J]. CALIBRATION AND RELIABILITY IN GROUNDWATER MODELING: MANAGING GROUNDWATER AND THE ENVIRONMENT, 2009, : 433 - 436
  • [9] An enriched finite element method to fractional advection-diffusion equation
    Luan, Shengzhi
    Lian, Yanping
    Ying, Yuping
    Tang, Shaoqiang
    Wagner, Gregory J.
    Liu, Wing Kam
    [J]. COMPUTATIONAL MECHANICS, 2017, 60 (02) : 181 - 201
  • [10] An efficient differential quadrature method for fractional advection-diffusion equation
    Zhu, X. G.
    Nie, Y. F.
    Zhang, W. W.
    [J]. NONLINEAR DYNAMICS, 2017, 90 (03) : 1807 - 1827