Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

被引:7
|
作者
Sommer, P. [1 ]
Metzkes-Ng, J. [1 ]
Brack, F-E [1 ,2 ]
Cowan, T. E. [1 ,2 ]
Kraft, S. D. [1 ]
Obst, L. [1 ,2 ]
Rehwald, M. [1 ,2 ]
Schlenvoigt, H-P [1 ]
Schramm, U. [1 ,2 ]
Zeil, K. [1 ]
机构
[1] HZDR, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Tech Univ Dresden, D-01062 Dresden, Germany
关键词
target normal sheath acceleration; laser ablation; source size characterization; laser-driven proton acceleration; SOLID TARGETS; BEAMS; GENERATION; IRRADIATION; ELECTRON; PULSES;
D O I
10.1088/1361-6587/aab21e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For laser-driven ion acceleration from thin foils (similar to 10 mu m-100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer-thickness and relevant lateral extent-as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F similar to 0.6 J cm(-2), high: F similar to 4 J cm(-2)) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Laser-driven ion acceleration from relativistically transparent nanotargets
    Hegelich, B. M.
    Pomerantz, I.
    Yin, L.
    Wu, H. C.
    Jung, D.
    Albright, B. J.
    Gautier, D. C.
    Letzring, S.
    Palaniyappan, S.
    Shah, R.
    Allinger, K.
    Hoerlein, R.
    Schreiber, J.
    Habs, D.
    Blakeney, J.
    Dyer, G.
    Fuller, L.
    Gaul, E.
    Mccary, E.
    Meadows, A. R.
    Wang, C.
    Ditmire, T.
    Fernandez, J. C.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [32] Online charge measurement for petawatt laser-driven ion acceleration
    Geulig, Laura D. D.
    Obst-Huebl, Lieselotte
    Nakamura, Kei
    Bin, Jianhui
    Ji, Qing
    Steinke, Sven
    Snijders, Antoine M. M.
    Mao, Jian-Hua
    Blakely, Eleanor A. A.
    Gonsalves, Anthony J. J.
    Bulanov, Stepan
    van Tilborg, Jeroen
    Schroeder, Carl B. B.
    Geddes, Cameron G. R.
    Esarey, Eric
    Roth, Markus
    Schenkel, Thomas
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (10):
  • [33] Creation and characterization of free-standing cryogenic targets for laser-driven ion acceleration
    Tebartz, Alexandra
    Bedacht, Stefan
    Hesse, Markus
    Astbury, Sam
    Clarke, Rob
    Ortner, Alex
    Schaumann, Gabriel
    Wagner, Florian
    Neely, David
    Roth, Markus
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (09):
  • [34] The integrated laser-driven ion accelerator system and the laser-driven ion beam radiotherapy challenge
    Bolton, Paul R.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 809 : 149 - 155
  • [35] Ion beam bunching via phase rotation in cascading laser-driven ion acceleration
    Wang, H. C.
    Weng, S. M.
    Liu, M.
    Chen, M.
    He, M. Q.
    Zhao, Q.
    Murakami, M.
    Sheng, Z. M.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (08)
  • [36] Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states
    Nishiuchi, M.
    Dover, N. P.
    Hata, M.
    Sakaki, H.
    Kondo, Ko
    Lowe, H. F.
    Miyahara, T.
    Kiriyama, H.
    Koga, J. K.
    Iwata, N.
    Alkhimova, M. A.
    Pirozhkov, A. S.
    Faenov, A. Ya
    Pikuz, T. A.
    Sagisaka, A.
    Watanabe, Y.
    Kando, M.
    Kondo, K.
    Ditter, E. J.
    Ettlinger, O. C.
    Hicks, G. S.
    Najmudin, Z.
    Ziegler, T.
    Zeil, K.
    Schramm, U.
    Sentoku, Y.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [37] Laser driven ion acceleration
    Mora, P.
    [J]. ASIAN SUMMER SCHOOL ON LASER PLASMA ACCELERATION AND RADIATION, 2007, 920 : 98 - 117
  • [38] Beam extraction from a laser-driven multicharged ion source
    Anderson, OA
    Logan, BG
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (02): : 1106 - 1106
  • [39] Influence of radiation reaction force on ultraintense laser-driven ion acceleration
    Capdessus, R.
    McKenna, P.
    [J]. PHYSICAL REVIEW E, 2015, 91 (05):
  • [40] Beam extraction from a laser-driven multicharged ion source
    Anderson, O.A.
    Logan, B. Grant
    [J]. Review of Scientific Instruments, 1998, 69 (2 pt 2):