Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

被引:7
|
作者
Sommer, P. [1 ]
Metzkes-Ng, J. [1 ]
Brack, F-E [1 ,2 ]
Cowan, T. E. [1 ,2 ]
Kraft, S. D. [1 ]
Obst, L. [1 ,2 ]
Rehwald, M. [1 ,2 ]
Schlenvoigt, H-P [1 ]
Schramm, U. [1 ,2 ]
Zeil, K. [1 ]
机构
[1] HZDR, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Tech Univ Dresden, D-01062 Dresden, Germany
关键词
target normal sheath acceleration; laser ablation; source size characterization; laser-driven proton acceleration; SOLID TARGETS; BEAMS; GENERATION; IRRADIATION; ELECTRON; PULSES;
D O I
10.1088/1361-6587/aab21e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For laser-driven ion acceleration from thin foils (similar to 10 mu m-100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer-thickness and relevant lateral extent-as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F similar to 0.6 J cm(-2), high: F similar to 4 J cm(-2)) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Laser-driven ion acceleration with hollow laser beams
    Brabetz, C.
    Busold, S.
    Cowan, T.
    Deppert, O.
    Jahn, D.
    Kester, O.
    Roth, M.
    Schumacher, D.
    Bagnoud, V.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (01)
  • [2] Development of laser-driven ion source
    Daido, H.
    Nishiuchi, M.
    Fukumi, A.
    Li, Z.
    Sagisaka, A.
    Ogura, K.
    Orimo, S.
    Kado, M.
    Hayashi, Y.
    Mori, M.
    Nagashima, A.
    Pirozhkov, A.
    Bulanov, S.
    Esirkepov, T.
    Kimura, T.
    Tajima, T.
    Nemoto, K.
    Oishi, Y.
    Nayuki, T.
    Fujii, T.
    Noda, A.
    Iwashita, Y.
    Shirai, T.
    Nakamura, S.
    [J]. SUPERSTRONG FIELDS IN PLASMAS, 2006, 827 : 203 - +
  • [3] Fabrication and characterization of thin polymer targets for laser-driven ion acceleration
    Tebartz, A.
    Bedacht, S.
    Schaumann, G.
    Roth, M.
    [J]. 5TH TARGET FABRICATION WORKSHOP, 2016, 713
  • [4] Automated control and optimization of laser-driven ion acceleration
    Loughran, B.
    Streeter, M. J. V.
    Ahmed, H.
    Astbury, S.
    Balcazar, M.
    Borghesi, M.
    Bourgeois, N.
    Curry, C. B.
    Dann, S. J. D.
    DiIorio, S.
    Dover, N. P.
    Dzelzainis, T.
    Ettlinger, O. C.
    Gauthier, M.
    Giuffrida, L.
    Glenn, G. D.
    Glenzer, S. H.
    Green, J. S.
    Gray, R. J.
    Hicks, G. S.
    Hyland, C.
    Istokskaia, V.
    King, M.
    Margarone, D.
    McCusker, O.
    McKenna, P.
    Najmudin, Z.
    Parisuana, C.
    Parsons, P.
    Spindloe, C.
    Symes, D. R.
    Thomas, A. G. R.
    Treffert, F.
    Xu, N.
    Palmer, C. A. J.
    [J]. HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11
  • [5] Enhancement of laser-driven electron acceleration in an ion channel
    Arefiev, Alexey V.
    Khudik, Vladimir N.
    Schollmeier, Marius
    [J]. PHYSICS OF PLASMAS, 2014, 21 (03)
  • [6] Automated control and optimization of laser-driven ion acceleration
    B.Loughran
    M.J.V.Streeter
    H.Ahmed
    S.Astbury
    M.Balcazar
    M.Borghesi
    N.Bourgeois
    C.B.Curry
    S.J.D.Dann
    S.Di Iorio
    N.P.Dover
    T.Dzelzainis
    O.C.Ettlinger
    M.Gauthier
    L.Giuffrida
    G.D.Glenn
    S.H.Glenzer
    J.S.Green
    R.J.Gray
    G.S.Hicks
    C.Hyland
    V.Istokskaia
    M.King
    D.Margarone
    O.Mc Cusker
    P.Mc Kenna
    Z.Najmudin
    C.Parisua?a
    P.Parsons
    C.Spindloe
    D.R.Symes
    A.G.R.Thomas
    F.Treffert
    N.Xu
    C.A.J.Palmer
    [J]. High Power Laser Science and Engineering, 2023, 11 (03) : 36 - 44
  • [7] Ion acceleration from laser-driven electrostatic shocks
    Fiuza, F.
    Stockem, A.
    Boella, E.
    Fonseca, R. A.
    Silva, L. O.
    Haberberger, D.
    Tochitsky, S.
    Mori, W. B.
    Joshi, C.
    [J]. PHYSICS OF PLASMAS, 2013, 20 (05)
  • [8] Laser-driven Helium Ion Acceleration for Hadron Therapy
    Bulanov, S. S.
    Esarey, E.
    Schroeder, C. B.
    Leemans, W. P.
    Bulanov, S. V.
    Margarone, D.
    Korn, G.
    Haberer, T.
    [J]. ADVANCED ACCELERATOR CONCEPTS, (AAC 2014), 2016, 1777
  • [9] The impact of contaminants on laser-driven light ion acceleration
    Petrov, G. M.
    Willingale, L.
    Davis, J.
    Petrova, Tz.
    Maksimchuk, A.
    Krushelnick, K.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (10)
  • [10] Novel Spectrometer Designs for Laser-Driven Ion Acceleration
    Morabito, Antonia
    Nelissen, Kwinten
    Migliorati, Mauro
    Ter-Avetisyan, Sargis
    [J]. PHOTONICS, 2024, 11 (07)