Single-image super-resolution via local learning

被引:89
|
作者
Tang, Yi [1 ]
Yan, Pingkun [1 ]
Yuan, Yuan [1 ]
Li, Xuelong [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPt IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Super-resolution; Local learning; Generalization; Reproducing kernel; Kernel ridge regression; Similarity;
D O I
10.1007/s13042-011-0011-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nearest neighbor-based algorithms are popular in example-based super-resolution from a single image. The core idea behind such algorithms is that similar images are close in the sense of distance measurement. However, it is well known in the field of machine learning and statistical learning theory that the generalization of the nearest neighbor-based estimation is poor, when complex or high dimensional data are considered. To improve the power of the nearest neighbor-based algorithms in single-image based super-resolution, a local learning method is proposed in this paper. Similar to the nearest neighbor-based algorithms, a local training set is generated according to the similarity between the training samples and a given test sample. For super-resolving the given test sample, a local regression function is learned on the local training set. The generalization of nearest neighbor-based algorithms can be enhanced by the process of local regression. Based on such an idea, we propose a novel local-learning-based algorithm, where kernel ridge regression algorithm is used in local regression for its well generalization. Some experimental results verify the effectiveness and efficiency of the local learning algorithm in single-image based super-resolution.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [21] Unified Single-Image and Video Super-Resolution via Denoising Algorithms
    Brifman A.
    Romano Y.
    Elad M.
    IEEE Transactions on Image Processing, 2019, 28 (12) : 6063 - 6076
  • [22] Single-Image Super-Resolution via Adaptive Joint Kernel Regression
    Huang, Chen
    Ding, Xiaoqing
    Fang, Chi
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
  • [23] Single-image super-resolution reconstruction via double layer reconstructing
    Gong, Wei-Guo
    Pan, Fei-Yu
    Li, Jin-Ming
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2014, 22 (03): : 720 - 729
  • [24] Zero-Shot Blind Learning for Single-Image Super-Resolution
    Yamawaki, Kazuhiro
    Han, Xian-Hua
    INFORMATION, 2023, 14 (01)
  • [25] Fast On-Device Learning Framework for Single-Image Super-Resolution
    Lee, Seok Hee
    Park, Karam
    Cho, Sunwoo
    Lee, Hyun-Seung
    Choi, Kyuha
    Cho, Nam Ik
    IEEE ACCESS, 2024, 12 : 37276 - 37287
  • [26] Single-Image Super-Resolution Based on Semi-Supervised Learning
    Tang, Yi
    Yuan, Yuan
    Yan, Pingkun
    Li, Xuelong
    Pan, Xiaoli
    Li, Luoqing
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 52 - 56
  • [27] Coupled dictionary learning in wavelet domain for Single-Image Super-Resolution
    Junaid Ahmed
    Muhammad Waqas
    Shamshad Ali
    Raheel Ahmed Memon
    Reinhard Klette
    Signal, Image and Video Processing, 2018, 12 : 453 - 461
  • [28] Learning a no-reference quality metric for single-image super-resolution
    Ma, Chao
    Yang, Chih-Yuan
    Yang, Xiaokang
    Yang, Ming-Hsuan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 158 : 1 - 16
  • [29] Coupled dictionary learning in wavelet domain for Single-Image Super-Resolution
    Ahmed, Junaid
    Waqas, Muhammad
    Ali, Shamshad
    Memon, Raheel Ahmed
    Klette, Reinhard
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (03) : 453 - 461
  • [30] Single-image super-resolution via a lightweight convolutional neural network with improved shuffle learning
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Chen, Yudan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 233 - 241