Microstructure and mechanical properties of high strength steel deposits obtained by Wire-Arc Additive Manufacturing

被引:26
|
作者
Bourlet, Clement [1 ,2 ,3 ]
Zimmer-Chevret, Sandra [2 ]
Pesci, Raphael [3 ]
Bigot, Regis [2 ]
Robineau, Aurelien [1 ]
Scandella, Fabrice [1 ]
机构
[1] Inst Soudure, 4 Blvd Henri Becquerel, F-57970 Yutz, France
[2] Univ Lorraine, LCFC, Arts & Metiers ParisTech, 4 Rue Augustin Fresnel, F-57078 Metz 3, France
[3] ENSAM Arts & Metiers ParisTech, LEM3 UMR CNRS 7239, 4 Rue Augustin Fresnel, F-57078 Metz 3, France
关键词
Wire-Arc Additive Manufacturing; ER100; /; G; 69; 6; M21; Mn4Ni1.5CrMo; Mechanical properties; Microstructure; Retained austenite; METAL; ALLOY; EVOLUTION;
D O I
10.1016/j.jmatprotec.2020.116759
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire-arc additive manufacturing has become an alternative way to produce industrial parts. In this work 15 kg walls are built with an effective building rate of 4.85 kg/h using an ER100 wire providing good tensile properties and toughness under welding conditions. The thermal evolution of the walls during manufacturing is measured by thermocouples and an IR camera: it depends on process parameters, deposit strategy and the size of the part. The walls are then characterised as deposit and after heat treatment through hardness, tensile and Charpy-V notch tests. The results show a fine microstructure with unexpected retained austenite and coarse allotriomorphic ferrite in the as deposited walls. The final hardness values vary from about 220 to 280 HV2; the yield stress and tensile strength are 520 and 790 MPa, respectively, and a toughness of about 50 J is obtained at room temperature. The heat treatment transforms the retained austenite, leading to an improvement of the yield stress to 600 MPa.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Processing of a Martensitic Tool Steel by Wire-Arc Additive Manufacturing
    Ziesing, Ulf
    Lentz, Jonathan
    Roettger, Arne
    Theisen, Werner
    Weber, Sebastian
    MATERIALS, 2022, 15 (21)
  • [22] Microstructure and mechanical properties of a structurally refined Al-Mg-Si alloy for wire-arc additive manufacturing
    Klein, Thomas
    Arnoldt, Aurel
    Lahnsteiner, Robert
    Schnall, Martin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 830
  • [23] Wire-arc additive manufacturing of Mg-Gd-Y-Zn-Zr alloy: Microstructure and mechanical properties
    Zhang, Ce
    Ju, Ruifeng
    Li, Yunlong
    Zhao, Zhanyong
    Wang, Liqing
    Ma, Kai
    Zhang, Dongdong
    Zhang, Zhen
    Bai, Peikang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3083 - 3092
  • [24] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF WIRE ARC ADDITIVE-MANUFACTURING HIGH-CARBON CHROMIUM BEARING STEEL
    Zhang, Wenjie
    Lei, Weining
    Zhang, Yang
    Liu, Xiao
    MATERIALI IN TEHNOLOGIJE, 2020, 54 (03): : 359 - 364
  • [25] Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization
    Hosseini, Vahid A.
    Hogstrom, Mats
    Hurtig, Kjell
    Bermejo, Maria Asuncion Valiente
    Stridh, Lars-Erik
    Karlsson, Leif
    WELDING IN THE WORLD, 2019, 63 (04) : 975 - 987
  • [26] Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization
    Vahid A Hosseini
    Mats Högström
    Kjell Hurtig
    Maria Asuncion Valiente Bermejo
    Lars-Erik Stridh
    Leif Karlsson
    Welding in the World, 2019, 63 : 975 - 987
  • [27] Microstructure, mechanical, and corrosion resistance of copper nickel alloy fabricated by wire-arc additive manufacturing
    Guo, Chun
    Kang, Taiyu
    Wu, Suisong
    Ying, Meng
    Liu, Wu Meng
    Chen, Feng
    MRS COMMUNICATIONS, 2021, 11 (06) : 910 - 916
  • [28] Microstructure and Mechanical Properties of AISI 420 Stainless Steel Produced by Wire Arc Additive Manufacturing
    Lunde, Jonas
    Kazemipour, Mostafa
    Salahi, Salar
    Nasiri, Ali
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 413 - 424
  • [29] Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties
    Rodrigues, Tiago A.
    Duarte, V
    Avila, Julian A.
    Santos, Telmo G.
    Miranda, R. M.
    Oliveira, J. P.
    ADDITIVE MANUFACTURING, 2019, 27 : 440 - 450
  • [30] Microstructure, mechanical, and corrosion resistance of copper nickel alloy fabricated by wire-arc additive manufacturing
    Chun Guo
    Taiyu Kang
    Suisong Wu
    Meng Ying
    Wu Meng Liu
    Feng Chen
    MRS Communications, 2021, 11 : 910 - 916