Lagrangian coherent structures and plasma transport processes

被引:17
|
作者
Falessi, M. V. [1 ]
Pegoraro, F. [2 ]
Schep, T. J. [3 ]
机构
[1] Univ Rome Tre, Dipartimento Matemat & Fis, I-00199 Rome, Italy
[2] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[3] Eindhoven Univ Technol, Dept Phys, NL-5612 AP Eindhoven, Netherlands
关键词
DIFFUSION; PARTICLES; TOKAMAK;
D O I
10.1017/S0022377815000690
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A dynamical system framework is used to describe transport processes in plasmas embedded in a magnetic field. For periodic systems with one degree of freedom, the Poincare map provides a splitting of the phase space into regions where particles have different kinds of motion: periodic, quasi-periodic or chaotic. The boundaries of these regions are transport barriers, i.e. a trajectory cannot cross such boundaries throughout the evolution of the system. Lagrangian coherent structures generalize this method to systems with the most general time dependence, splitting the phase space into regions with different qualitative behaviours. This leads to the definition of finite-time transport barriers, i.e. trajectories cannot cross the barrier for a finite amount of time. This methodology can be used to identify fast recirculating regions in the dynamical system and to characterize the transport between them.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] AN ANALYSIS OF ENERGY-TRANSPORT PROCESSES IN THE PRESENCE OF COHERENT STRUCTURES
    ELSNER, JW
    DROBNIAK, S
    KLAJNY, R
    APPLIED SCIENTIFIC RESEARCH, 1993, 51 (1-2): : 391 - 397
  • [22] Investigating transport in a tidally driven coral atoll flow using Lagrangian coherent structures
    Filippi, Margaux
    Hadjighasem, Alireza
    Rayson, Matt
    Rypina, Irina I.
    Ivey, Greg
    Lowe, Ryan
    Gilmour, James
    Peacock, Thomas
    LIMNOLOGY AND OCEANOGRAPHY, 2021, 66 (11) : 4017 - 4027
  • [23] Material and debris transport patterns in Moreton Bay, Australia: The in fluence of Lagrangian coherent structures
    Suara, Kabir
    Khanarmuei, Mohammadreza
    Ghosh, Anusmriti
    Yu, Yingying
    Zhang, Hong
    Soomere, Tarmo
    Brown, Richard J.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 721
  • [24] Lagrangian coherent structures in the ocean favorable for fishery
    S. V. Prants
    M. Yu. Uleysky
    M. V. Budyansky
    Doklady Earth Sciences, 2012, 447 : 1269 - 1272
  • [25] Detection of Lagrangian Coherent Structures in the SPH framework
    Suna, P. N.
    Colagrossi, A.
    Marrone, S.
    Zhang, A. M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 305 : 849 - 868
  • [26] Lagrangian coherent structures and inertial particle dynamics
    Sudharsan, M.
    Brunton, Steven L.
    Riley, James J.
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [27] Anisotropic mesh adaptation on Lagrangian Coherent Structures
    Miron, Philippe
    Vetel, Jerome
    Garon, Andre
    Delfour, Michel
    El Hassan, Mouhammad
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (19) : 6419 - 6437
  • [28] Lagrangian Coherent Structures in a coastal upwelling environment
    Gough, Matt K.
    Reniers, Ad
    Olascoaga, M. Josefina
    Haus, Brian K.
    MacMahan, Jamie
    Paduan, Jeff
    Halle, Chris
    CONTINENTAL SHELF RESEARCH, 2016, 128 : 36 - 50
  • [29] Lagrangian coherent structures in tropical cyclone intensification
    Rutherford, B.
    Dangelmayr, G.
    Montgomery, M. T.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (12) : 5483 - 5507
  • [30] Lagrangian coherent structures in the ocean favorable for fishery
    Prants, S. V.
    Uleysky, M. Yu.
    Budyansky, M. V.
    DOKLADY EARTH SCIENCES, 2012, 447 (01) : 1269 - 1272