On the Artin exponent of some rational groups

被引:0
|
作者
Jafari, S. [1 ]
Sharifi, H. [1 ]
机构
[1] Shahed Univ, Fac Sci, Dept Math, POB 18155-159, Tehran, Iran
关键词
Artin exponent; extra-special; 2-group; Markel group; rational group;
D O I
10.1080/00927872.2017.1347665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite group G is called rational if all its irreducible complex characters are rational valued. In this paper, we show that if G is a direct product of finitely many rational Frobenius groups then every rationally represented character of G is a generalized permutation character. Also we show that the same assertion holds when G is a solvable rational group with a Sylow 2-subgroup isomorphic to the dihedral group of order 8 and an abelian normal Sylow 3-subgroup.
引用
收藏
页码:1519 / 1526
页数:8
相关论文
共 50 条
  • [21] On the Σ-invariants of Artin groups
    Meier, J
    Meinert, H
    VanWyk, L
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2001, 110 (01) : 71 - 81
  • [22] COHOMOLOGY OF ARTIN GROUPS
    De Concini, C.
    Salvetti, M.
    [J]. MATHEMATICAL RESEARCH LETTERS, 1996, 3 (02) : 293 - 297
  • [23] EXTENDED ARTIN GROUPS
    VANDERLEK, H
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 117 - 121
  • [24] ARTIN GROUPS AND INFINITE COXETER GROUPS
    APPEL, KI
    SCHUPP, PE
    [J]. INVENTIONES MATHEMATICAE, 1983, 72 (02) : 201 - 220
  • [25] Artin braid groups and homotopy groups
    Li, Jingyan
    Wu, Jie
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 99 : 521 - 556
  • [26] The BNS-invariant for some Artin groups of arbitrary circuit rank
    Almeida, Kisnney
    [J]. JOURNAL OF GROUP THEORY, 2017, 20 (04) : 793 - 806
  • [27] Rigidity of Coxeter groups and Artin groups
    Brady, N
    McCammond, JP
    Mühlherr, B
    Neumann, WD
    [J]. GEOMETRIAE DEDICATA, 2002, 94 (01) : 91 - 109
  • [28] Rigidity of Coxeter Groups and Artin Groups
    Noel Brady
    Jonathan P. McCammond
    Bernhard Mühlherr
    Walter D. Neumann
    [J]. Geometriae Dedicata, 2002, 94 : 91 - 109
  • [29] Cohomology of Coxeter groups and Artin groups
    De Concini, C
    Salvetti, M
    [J]. MATHEMATICAL RESEARCH LETTERS, 2000, 7 (2-3) : 213 - 232
  • [30] Injectivity on the set of conjugacy classes of some monomorphisms between Artin groups
    Lee, Eon-Kyung
    Lee, Sang-Jin
    [J]. JOURNAL OF ALGEBRA, 2010, 323 (07) : 1879 - 1907