A numerical method for the fractional Schrodinger type equation of spatial dimension two

被引:28
|
作者
Ford, Neville J. [1 ]
Manuela Rodrigues, M. [2 ]
Vieira, Nelson [3 ,4 ]
机构
[1] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[2] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[3] CIDMA Ctr Res & Dev Math & Applicat, P-2411901 Leiria, Portugal
[4] Polytech Inst Leiria, Sch Technol & Management, P-2411901 Leiria, Portugal
关键词
fractional partial differential equation; fractional Schrodinger equation; finite difference method; stability; Mittag-Leffler function; FINITE-PART INTEGRALS; QUANTUM-MECHANICS;
D O I
10.2478/s13540-013-0028-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focuses on an investigation of the (n+1)-dimensional time-dependent fractional Schrodinger type equation. In the early part of the paper, the wave function is obtained using Laplace and Fourier transform methods and a symbolic operational form of the solutions in terms of Mittag-Leffler functions is provided. We present an expression for the wave function and for the quantum mechanical probability density. We introduce a numerical method to solve the case where the space component has dimension two. Stability conditions for the numerical scheme are obtained.
引用
收藏
页码:454 / 468
页数:15
相关论文
共 50 条
  • [31] An efficient energy-preserving method for the two-dimensional fractional Schrodinger equation
    Fu, Yayun
    Xu, Zhuangzhi
    Cai, Wenjun
    Wang, Yushun
    APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 232 - 247
  • [32] The Numerical Computation of the Time Fractional Schrodinger Equation on an Unbounded Domain
    Li, Dan
    Zhang, Jiwei
    Zhang, Zhimin
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 77 - 94
  • [33] Structure-preserving numerical methods for the fractional Schrodinger equation
    Wang, Pengde
    Huang, Chengming
    APPLIED NUMERICAL MATHEMATICS, 2018, 129 : 137 - 158
  • [34] Error Analysis and Numerical Simulations of Strang Splitting Method for Space Fractional Nonlinear Schrodinger Equation
    Zhai, Shuying
    Wang, Dongling
    Weng, Zhifeng
    Zhao, Xuan
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 965 - 989
  • [35] A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schrodinger equation
    Heydari, M. H.
    Razzaghi, M.
    Baleanu, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [36] Fractional Schrodinger equation
    Laskin, N
    PHYSICAL REVIEW E, 2002, 66 (05): : 7 - 056108
  • [37] An Efficient Numerical Method for the Solution of the Schrodinger Equation
    Zhang, Licheng
    Simos, Theodore E.
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [38] Fourier pseudospectral method for fractional stationary Schrodinger equation
    Yang, Yin
    Li, Xueyang
    Xiao, Aiguo
    APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 137 - 151
  • [39] A transformation method for numerical solution of the Schrodinger equation
    Kulhanek, J
    COMPUTER PHYSICS COMMUNICATIONS, 1997, 105 (01) : 37 - 41
  • [40] Method for Numerical Solution of the Stationary Schrodinger Equation
    Knyazev, S. Yu.
    Shcherbakova, E. E.
    RUSSIAN PHYSICS JOURNAL, 2017, 59 (10) : 1616 - 1622