RNA-Seq for Enrichment and Analysis of IRF5 Transcript Expression in SLE

被引:41
|
作者
Stone, Rivka C. [1 ,2 ]
Du, Peicheng [3 ]
Feng, Di [1 ,2 ]
Dhawan, Kopal [4 ]
Ronnblom, Lars [5 ]
Eloranta, Maija-Leena [5 ]
Donnelly, Robert [4 ]
Barnes, Betsy J. [1 ,2 ]
机构
[1] UMDNJ, New Jersey Med Sch, Dept Biochem & Mol Biol, Newark, NJ USA
[2] UMDNJ, Univ Hosp Canc Ctr, New Jersey Med Sch, Newark, NJ USA
[3] UMDNJ, Dept Informat Syst & Technol, Newark, NJ USA
[4] UMDNJ, New Jersey Med Sch, Mol Resource Facil, Newark, NJ USA
[5] Uppsala Univ, Rheumatol Sect, Dept Med Sci, Uppsala, Sweden
来源
PLOS ONE | 2013年 / 8卷 / 01期
基金
瑞典研究理事会;
关键词
SYSTEMIC-LUPUS-ERYTHEMATOSUS; INTERFERON REGULATORY FACTOR; GREEN FLUORESCENT PROTEIN; GENETIC-VARIANTS; RISK HAPLOTYPE; DISEASE; ACTIVATION; ALPHA; ASSOCIATION; INTERFERON-REGULATORY-FACTOR-5;
D O I
10.1371/journal.pone.0054487
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polymorphisms in the interferon regulatory factor 5 (IRF5) gene have been consistently replicated and shown to confer risk for or protection from the development of systemic lupus erythematosus (SLE). IRF5 expression is significantly upregulated in SLE patients and upregulation associates with IRF5-SLE risk haplotypes. IRF5 alternative splicing has also been shown to be elevated in SLE patients. Given that human IRF5 exists as multiple alternatively spliced transcripts with distinct function(s), it is important to determine whether the IRF5 transcript profile expressed in healthy donor immune cells is different from that expressed in SLE patients. Moreover, it is not currently known whether an IRF5-SLE risk haplotype defines the profile of IRF5 transcripts expressed. Using standard molecular cloning techniques, we identified and isolated 14 new differentially spliced IRF5 transcript variants from purified monocytes of healthy donors and SLE patients to generate an IRF5 variant transcriptome. Next-generation sequencing was then used to perform in-depth and quantitative analysis of full-length IRF5 transcript expression in primary immune cells of SLE patients and healthy donors by next-generation sequencing. Evidence for additional alternatively spliced transcripts was obtained from de novo junction discovery. Data from these studies support the overall complexity of IRF5 alternative splicing in SLE. Results from next-generation sequencing correlated with cloning and gave similar abundance rankings in SLE patients thus supporting the use of this new technology for in-depth single gene transcript profiling. Results from this study provide the first proof that 1) SLE patients express an IRF5 transcript signature that is distinct from healthy donors, 2) an IRF5-SLE risk haplotype defines the top four most abundant IRF5 transcripts expressed in SLE patients, and 3) an IRF5 transcript signature enables clustering of SLE patients with the H2 risk haplotype.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Functional characterization of IRF5 exon 6 variants in SLE risk
    Ozarkar, Snehal
    McFarland, Adelle
    Sayan, Ram
    JOURNAL OF IMMUNOLOGY, 2017, 198 (01):
  • [42] Power analysis for RNA-Seq differential expression studies
    Yu, Lianbo
    Fernandez, Soledad
    Brock, Guy
    BMC BIOINFORMATICS, 2017, 18
  • [43] Opposed independent effects and epistasis in the complex association of IRF5 to SLE
    Ferreiro-Neira, I.
    Calaza, M.
    Alonso-Perez, E.
    Marchini, M.
    Scorza, R.
    Sebastiani, G. D.
    Blanco, F. J.
    Rego, I.
    Pullmann, R., Jr.
    Pullmann, R.
    Kallenberg, C. G.
    Bijl, M.
    Skopouli, F. N.
    Mavromati, M.
    Migliaresi, S.
    Barizzone, N.
    Ruzickova, S.
    Dostal, C.
    Schmidt, R. E.
    Witte, T.
    Papasteriades, C.
    Kappou-Rigatou, I.
    Endreffy, E.
    Kovacs, A.
    Ordi-Ros, J.
    Balada, E.
    Carreira, P.
    Gomez-Reino, J. J.
    Gonzalez, A.
    GENES AND IMMUNITY, 2007, 8 (05) : 429 - 438
  • [44] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [45] Power analysis for RNA-Seq differential expression studies
    Lianbo Yu
    Soledad Fernandez
    Guy Brock
    BMC Bioinformatics, 18
  • [46] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    BMC Bioinformatics, 14
  • [47] DegNorm: normalization of generalized transcript degradation improves accuracy in RNA-seq analysis
    Xiong, Bin
    Yang, Yiben
    Fineis, Frank R.
    Wang, Ji-Ping
    GENOME BIOLOGY, 2019, 20 (1)
  • [48] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [49] DegNorm: normalization of generalized transcript degradation improves accuracy in RNA-seq analysis
    Bin Xiong
    Yiben Yang
    Frank R. Fineis
    Ji-Ping Wang
    Genome Biology, 20
  • [50] A novel min-cost flow method for estimating transcript expression with RNA-Seq
    Tomescu, Alexandru I.
    Kuosmanen, Anna
    Rizzi, Romeo
    Makinen, Veli
    BMC BIOINFORMATICS, 2013, 14