OccVis: a visual analytics system for occultation data

被引:1
|
作者
Cheng, Shiyu [1 ,3 ]
Shan, Guihua [1 ]
Liu, Jun [1 ,3 ]
Gao, Yang [1 ]
Wei, Ping [1 ]
Bai, Weihua [2 ]
Zhao, Danyang [2 ]
机构
[1] Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
[2] Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
关键词
Visual analytics; Spatiotemporal visualization; Multi-scale visualization; Occultation data; EXPLORATION; VALIDATION; GNOS;
D O I
10.1007/s12650-018-00545-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The FY-3C satellite returns more than 250,000 occultation data each year, each of which records high vertical resolution profiles of various climatic parameters in the range of 0-1000km above the Earth. These long-term, stable, and globally distributed observations can be used to improve climate modeling and analyze trends in spatial climate. However, traditional methods based on small samples meet challenges in analyzing the multi-dimensional occultation data in large volume. In this paper, we developed OccVis-a visual analytics system for multi-dimensional and multi-scale comparative analysis of occultation data. With a novel workflow, a series of data processing methods are proposed to support data correcting, patching, and clustering. Moreover, a matrix view with two modes is presented for overview, and a detail view along with time series view is provided for further analysis. Domain scientists can easily utilize our system to visually and interactively explore multivariable occultation data at different time and space scales. Finally, we conduct case studies in climate modeling of ionosphere and obtain several preliminary results to demonstrate the usage and effectiveness of our system.
引用
收藏
页码:609 / 624
页数:16
相关论文
共 50 条
  • [21] PEViz: an in situ progressive visual analytics system for ocean ensemble data
    Yihan Zhang
    Guan Li
    Runpu Yue
    Jun Liu
    Guihua Shan
    [J]. Journal of Visualization, 2023, 26 : 423 - 440
  • [22] A Web-based visual analytics system for real estate data
    GuoDao Sun
    RongHua Liang
    FuLi Wu
    HuaMin Qu
    [J]. Science China Information Sciences, 2013, 56 : 1 - 13
  • [23] Big data visual analytics for exploratory earth system simulation analysis
    Steed, Chad A.
    Ricciuto, Daniel M.
    Shipman, Galen
    Smith, Brian
    Thornton, Peter E.
    Wang, Dali
    Shi, Xiaoying
    Williams, Dean N.
    [J]. COMPUTERS & GEOSCIENCES, 2013, 61 : 71 - 82
  • [24] Effortless Data Exploration with zenvisage: An Expressive and Interactive Visual Analytics System
    Siddiqui, Tarique
    Kim, Albert
    Lee, John
    Karahalios, Karrie
    Parameswaran, Aditya
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 10 (04): : 457 - 468
  • [25] DFDVis: A Visual Analytics System for Understanding the Semantics of Data Flow Diagram
    Xiong, Hao
    Zhang, Haocheng
    Dong, Xiaoju
    Meng, Lingxi
    Zhao, Wenyang
    [J]. DATA SCIENCE, PT 1, 2017, 727 : 660 - 673
  • [26] A Web-based visual analytics system for real estate data
    Sun GuoDao
    Liang RougHua
    Wu FuLi
    Qu HuaMin
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (05) : 1 - 13
  • [27] DietVis: Visual Analytics System for Chinese Diet Data Based on Cuisines
    Dan F.
    Xiaoqi Y.
    Hongxing Q.
    Haibo H.
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (04): : 562 - 574
  • [28] A Web-based visual analytics system for real estate data
    SUN GuoDao
    LIANG RongHua
    WU FuLi
    QU HuaMin
    [J]. Science China(Information Sciences), 2013, 56 (05) : 159 - 171
  • [29] Visual analytics for the clustering capability of data
    ZhiMao Lu
    Chen Liu
    Qi Zhang
    ChunXiang Zhang
    DongMei Fan
    Peng Yang
    [J]. Science China Information Sciences, 2013, 56 : 1 - 14
  • [30] Be the Data: Social Meetings with Visual Analytics
    Chen, Xin
    Self, Jessica Zeitz
    Sun, Maoyuan
    House, Leanna
    North, Chris
    [J]. 2016 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS (CTS), 2016, : 267 - 274