La0.8Sr1.2CoO4+δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cells

被引:32
|
作者
Zhou, Jun [1 ]
Chen, Gang [1 ]
Wu, Kai [1 ]
Cheng, Yonghong [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
关键词
Solid oxide fuel cells; Cathode materials; Mixed ionic-electronic conductor; Electrochemical property; TRANSPORT-PROPERTIES; ELECTRICAL-CONDUCTIVITY; OXYGEN REDUCTION; SURFACE EXCHANGE; DIFFUSION; KINETICS; SR; NONSTOICHIOMETRY; PERFORMANCES; CERAMICS;
D O I
10.1016/j.jpowsour.2012.11.110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
La0.8Sr1.2CoO4+delta (LSCO4) material with K2NiF4-type structure has been synthesized via a citric-nitrate process and characterized. Composite materials La0.8Sr1.2CoO4+delta-Ce0.9Gd0.1O2-delta (CGO) (LSCO4-CGO) have been prepared and evaluated as cathode for intermediate temperature SOFC (IT-SOFC) based on La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) electrolytes. LSCO4 oxide is chemically compatible with CGO and LSGM electrolyte at temperature up to 1000 degrees C. Compared with the pure LSCO4, the optimum composition of LSCO4-35 wt % CGO exhibits better electrochemical activity for oxygen reduction. Also, for LSCO4-35 wt % CGO electrode, SEM results suggest that better microstructure is obtained and the electrode forms good contact with the electrolyte after sintering at 1000 degrees C for 2 h. At 750 degrees C, the polarization resistance of the LSCO4-35 wt % CGO composite cathode is about 0.21 Omega cm(2) in air. A cell with a 1.2 mm thick LSGM electrolyte, NiO as anode, and LSCO4-35 wt % CGO as cathode displays a maximum power density of 515 mW cm(-2) at 750 degrees C. These results indicate that LSCO4-CGO composite materials are promising cathode candidates for intermediate-temperature solid oxide fuel cells with LSGM electrolyte. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:332 / 337
页数:6
相关论文
共 50 条
  • [21] Honeycomb-type solid oxide fuel cells using La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte
    Zhong, Hao
    Matsumoto, Hiroshige
    Ishihara, Tatsumi
    Toriyama, Akira
    CHEMISTRY LETTERS, 2007, 36 (07) : 846 - 847
  • [22] Influence of small amounts of gallium oxide addition on ionic conductivity of La0.9Sr0.1Ga0.8Mg0.2O3-δ solid electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    CERAMICS INTERNATIONAL, 2018, 44 (01) : 115 - 119
  • [23] Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ thin film on the porous cathode for SOFC
    Liu, Bangwu
    Tang, Lidan
    Zhang, Yue
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) : 440 - 445
  • [24] Preparation of La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte films deposited by RF magnetic sputtering
    Yang, Jianjun
    Ma, Wenhui
    Yu, Jie
    Chen, Xiuhua
    Xing, Jie
    Li, Rui
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 2550 - 2554
  • [25] Partial electronic conductivity and electrolytic domain of La0.9Sr0.1Ga0.8Mg0.2O3-δ
    Kim, JH
    Yoo, HI
    SOLID STATE IONICS, 2001, 140 (1-2) : 105 - 113
  • [26] Performance and short-term stability of single-chamber solid oxide fuel cells based on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte
    Morales, M.
    Roa, J. J.
    Tartaj, J.
    Segarra, M.
    JOURNAL OF POWER SOURCES, 2012, 216 : 417 - 424
  • [28] Stability at La0.6Sr0.4CoO3-d cathode/La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte interface under current flow for solid oxide fuel cells
    Horita, T
    Yamaji, K
    Sakai, N
    Yokokawa, H
    Weber, A
    Ivers-Tiffée, E
    SOLID STATE IONICS, 2000, 133 (3-4) : 143 - 152
  • [29] Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ powder for solid oxide fuel cell by a nitrate-citrate combustion route
    Zhang, NQ
    Sun, KN
    Zhou, DR
    Wu, NN
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2004, 20 (06) : 791 - 793
  • [30] Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells
    Zhang, Shan-Lin
    Liu, Tao
    Li, Chang-Jiu
    Yao, Shu-Wei
    Li, Cheng-Xin
    Yang, Guan-Jun
    Liu, Meilin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (14) : 7535 - 7553