Generalized zero-shot learning for action recognition with web-scale video data

被引:30
|
作者
Liu, Kun [1 ]
Liu, Wu [1 ]
Ma, Huadong [1 ]
Huang, Wenbing [2 ]
Dong, Xiongxiong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Tencent AI Lab, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Generalized zero-shot learning; Surveillance video; Transfer learning; Web-scale video data; FUSION;
D O I
10.1007/s11280-018-0642-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Action recognition in surveillance video makes our life safer by detecting the criminal events or predicting violent emergencies. However, efficient action recognition is not free of difficulty. First, there are so many action classes in daily life that we cannot pre-define all possible action classes beforehand. Moreover, it is very hard to collect real-word videos for certain particular actions such as steal and street fight due to legal restrictions and privacy protection. These challenges make existing data-driven recognition methods insufficient to attain desired performance. Zero-shot learning is potential to be applied to solve these issues since it can perform classification without positive example. Nevertheless, current zero-shot learning algorithms have been studied under the unreasonable setting where seen classes are absent during the testing phase. Motivated by this, we study the task of action recognition in surveillance video under a more realistic generalized zero-shot setting, where testing data contains both seen and unseen classes. To our best knowledge, this is one of the first works to study video action recognition under the generalized zero-shot setting. We firstly perform extensive empirical studies on several existing zero-shot leaning approaches under this new setting on a web-scale video data. Our experimental results demonstrate that, under the generalize setting, typical zero-shot learning methods are no longer effective for the dataset we applied. Then, we propose to deploy generalized zero-shot learning which transfers the knowledge of Web video to detect the anomalous actions in surveillance videos. To verify the effectiveness of methods, we further construct a new surveillance video dataset consisting of nine action classes related to the public safety situation.
引用
收藏
页码:807 / 824
页数:18
相关论文
共 50 条
  • [21] Model Selection for Generalized Zero-Shot Learning
    Zhang, Hongguang
    Koniusz, Piotr
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 198 - 204
  • [22] Dual insurance for generalized zero-shot learning
    Liang, Jiahao
    Fang, Xiaozhao
    Kang, Peipei
    Han, Na
    Li, Chuang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (03) : 2111 - 2125
  • [23] Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2371 - 2381
  • [24] Semantics Disentangling for Generalized Zero-Shot Learning
    Chen, Zhi
    Luo, Yadan
    Qiu, Ruihong
    Wang, Sen
    Huang, Zi
    Li, Jingjing
    Zhang, Zheng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8692 - 8700
  • [25] Learning MLatent Representations for Generalized Zero-Shot Learning
    Ye, Yalan
    Pan, Tongjie
    Luo, Tonghoujun
    Li, Jingjing
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2252 - 2265
  • [26] Meta-Learning for Generalized Zero-Shot Learning
    Verma, Vinay Kumar
    Brahma, Dhanajit
    Rai, Piyush
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6062 - 6069
  • [27] A Review of Generalized Zero-Shot Learning Methods
    Pourpanah, Farhad
    Abdar, Moloud
    Luo, Yuxuan
    Zhou, Xinlei
    Wang, Ran
    Lim, Chee Peng
    Wang, Xi-Zhao
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4051 - 4070
  • [28] Learning the Compositional Domains for Generalized Zero-shot Learning
    Dong, Hanze
    Fu, Yanwei
    Hwang, Sung Ju
    Sigal, Leonid
    Xue, Xiangyang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [29] Attributes learning network for generalized zero-shot learning
    Yun, Yu
    Wang, Sen
    Hou, Mingzhen
    Gao, Quanxue
    NEURAL NETWORKS, 2022, 150 : 112 - 118
  • [30] Transfer Increment for Generalized Zero-Shot Learning
    Feng, Liangjun
    Zhao, Chunhui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2506 - 2520