Spatial registration of data on in situ gene expression

被引:2
|
作者
Myasnikova, EM [1 ]
Samsonova, AA
Samsonova, MG
Reinitz, D
机构
[1] Inst High Throughput Computat & Databases, St Petersburg 198005, Russia
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家卫生研究院;
关键词
image registration; gene expression pattern; confocal microscopy; spline approximation; fruit fly; segmentation genes;
D O I
10.1023/A:1013215108374
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
For registering data on the in situ expression of segmentation genes, a method of image registration was developed basing on the spline approximation. The reference points for the registration were the coordinates of extrema in one-dimensional patterns of gene expression. This registration method is characterized by a very high accuracy. A method of creating a generalized pattern of gene expression in single cells is proposed, Such patterns were constructed for nine segmentation genes belonging to the gap and pair-rule classes of genes.
引用
收藏
页码:955 / 960
页数:6
相关论文
共 50 条
  • [31] Spatial gene expression quantification: a tool for analysis of in situ hybridizations in sea anemone Nematostella vectensis
    Daniel Botman
    Jaap A Kaandorp
    BMC Research Notes, 5 (1)
  • [32] SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models
    Gao, Dalong
    Ning, Jin
    Liu, Gang
    Sun, Shiquan
    Dang, Xiaoqian
    FRONTIERS IN GENETICS, 2022, 13
  • [33] A permutation test for determining significance of clusters with applications to spatial and gene expression data
    Park, P. J.
    Manjourides, J.
    Bonetti, M.
    Pagano, M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4290 - 4300
  • [34] Nonparametric identification of regulatory interactions from spatial and temporal gene expression data
    Aswani A.
    Keränen S.V.E.
    Brown J.
    Fowlkes C.C.
    Knowles D.W.
    Biggin M.D.
    Bickel P.
    Tomlin C.J.
    BMC Bioinformatics, 2010, 11 (1)
  • [35] Global Search Analysis of Spatial Gene Expression Data Using Genetic Algorithm
    Anandhavalli, M.
    Ghose, M. K.
    Gauthaman, K.
    Boosha, M.
    RECENT TRENDS IN NETWORK SECURITY AND APPLICATIONS, 2010, 89 : 593 - +
  • [36] Reducing the Subjectivity of Gene Expression Data Clustering Based on Spatial Contiguity Analysis
    Yi, Hui
    Song, Xiaofeng
    Jiang, Bin
    Liu, Yufang
    DATABASE THEORY AND APPLICATION, BIO-SCIENCE AND BIO-TECHNOLOGY, 2011, 258 : 118 - 124
  • [37] AllenDigger, a Tool for Spatial Expression Data Visualization, Spatial Heterogeneity Delineation, and Single-Cell Registration Based on the Allen Brain Atlas
    Wu, Qian
    Zhuo, Yan
    Wang, Xiaoqun
    Wang, Mengdi
    Zhuo, Liangchen
    Ma, Wenji
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (12): : 2864 - 2872
  • [38] In situ gene expression by Vibrio vulnificus
    Smith, B
    Oliver, JD
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (03) : 2244 - 2246
  • [39] A regression system for estimation of errors introduced by confocal imaging into gene expression data in situ
    Ekaterina Myasnikova
    Svetlana Surkova
    Grigory Stein
    Andrei Pisarev
    Maria Samsonova
    BMC Bioinformatics, 12
  • [40] A regression system for estimation of errors introduced by confocal imaging into gene expression data in situ
    Myasnikova, Ekaterina
    Surkova, Svetlana
    Stein, Grigory
    Pisarev, Andrei
    Samsonova, Maria
    BMC BIOINFORMATICS, 2011, 12