HDMF: Hierarchical Data Modeling Framework for Modem Science Data Standards

被引:0
|
作者
Tritt, Andrew J. [1 ]
Rubel, Oliver [1 ]
Dichter, Benjamin [2 ]
Ly, Ryan [1 ]
Kang, Donghe [3 ]
Chang, Edward E. [5 ,6 ]
Frank, Loren M. [4 ]
Bouchard, Kristofer [2 ]
机构
[1] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA USA
[3] Ohio State Univ, Comp Sci & Engn, Columbus, OH 43210 USA
[4] Univ Calif San Francisco, Howard Hughes Med Inst, Kavli Inst Fundamental Neurosci, Dept Physiol, San Francisco, CA USA
[5] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA USA
[6] Univ Calif San Francisco, Ctr Integrat Neurosci, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
data standards; data modeling; data formats; HDF5; neurophysiology;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A ubiquitous problem in aggregating data across different experimental and observational data sources is a lack of software infrastructure that enables flexible and extensible standardization of data and metadata. To address this challenge, we developed HDMF, a hierarchical data modeling framework for modern science data standards. With HDMF, we separate the process of data standardization into three main components: (1) data modeling and specification, (2) data I/O and storage, and (3) data interaction and data APIs. To enable standards to support the complex requirements and varying use cases throughout the data life cycle, HDMF provides object mapping infrastructure to insulate and integrate these various components. This approach supports the flexible development of data standards and extensions, optimized storage backends, and data APIs, while allowing the other components of the data standards ecosystem to remain stable. To meet the demands of modern, large-scale science data, HDMF provides advanced data I/O functionality for iterative data write, lazy data load, and parallel I/O. It also supports optimization of data storage via support for chunking, compression, linking, and modular data storage. We demonstrate the application of HDMF in practice to design NWB 2.0 [13], a modern data standard for collaborative science across the neurophysiology community.
引用
收藏
页码:165 / 179
页数:15
相关论文
共 50 条
  • [21] A common framework for health data governance standards
    Fatemeh Torabi
    Emma Squires
    Chris Orton
    Sharon Heys
    David Ford
    Ronan A. Lyons
    Simon Thompson
    [J]. Nature Medicine, 2024, 30 : 26 - 29
  • [22] The Ambiguity of Data Science Team Roles and the Need for a Data Science Workforce Framework
    Saltz, Jeffrey S.
    Grady, Nancy W.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 2355 - 2361
  • [23] UK Takes Leadership on Data Science Standards
    Penketh C.
    [J]. ITNOW, 2022, 64 (03) : 32 - 33
  • [24] An Expandable Hierarchical Statistical Framework for Count Data Modeling and its Application to Object Classification
    Bakhtiari, Ali Shojaee
    Bouguila, Nizar
    [J]. 2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 817 - 824
  • [25] HiMuV: Hierarchical Framework for Modeling Multi-Modality Multi-Resolution Data
    Li, Jianbo
    He, Jingrui
    Zhu, Yada
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 267 - 276
  • [26] Hierarchical division clustering framework for categorical data
    Wei, Wei
    Liang, Jiye
    Guo, Xinyao
    Song, Peng
    Sun, Yijun
    [J]. NEUROCOMPUTING, 2019, 341 : 118 - 134
  • [27] DATA MODEM EVOLUTION
    NYMAN, H
    SALCEDO, F
    SHARPE, JTL
    TARRY, CW
    [J]. ELECTRICAL COMMUNICATION, 1982, 57 (03): : 187 - 194
  • [28] SKI: An Agile Framework for Data Science
    Saltz, Jeffrey
    Suthrland, Alex
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3468 - 3476
  • [29] Data storytelling is not storytelling with data: A framework for storytelling in science communication and data journalism
    Matei, Sorin Adam
    Hunter, Lucas
    [J]. INFORMATION SOCIETY, 2021, 37 (05): : 312 - 322
  • [30] A Conceptual Framework for Mobility Data Science
    Stocker, Alexander
    Kaiser, Christian
    Lechner, Gernot
    Fellmann, Michael
    [J]. IEEE ACCESS, 2024, 12 : 117126 - 117142