Bridging learning analytics and Cognitive Computing for Big Data classification in micro-learning video collections

被引:49
|
作者
Dessl, Danilo [1 ]
Fenu, Gianni [1 ]
Marras, Mirko [1 ]
Recupero, Diego Reforgiato [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Via Osped 72, I-09124 Cagliari, Italy
关键词
Cognitive Computing; Big Data technologies; Micro-learning video; Multi-class classification; Learning Analytics; Video classification; MOOCS;
D O I
10.1016/j.chb.2018.03.004
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Moving towards the next generation of personalized learning environments requires intelligent approaches powered by analytics for advanced learning contexts with enriched digital content. Micro-Learning through Massive Open Online Courses is riding the wave of popularity as a novel paradigm for delivering short educational videos in small pre-organized chunks over time, so that learners can get knowledge in a manageable way. However, with the ever-increasing number of videos, it has become challenging to arrange and search them according to specific categories. In this paper, we get around the problem by bridging Learning Analytics and Cognitive Computing to analyze the content of large video collections, going over traditional term-based methods. We propose an efficient and effective approach to automatically classify a collection of educational videos on pre-existing categories which uses (i) a Speech-to-Text tool to get video transcripts, (ii) Natural Language Processing and Cognitive Computing methods to extract semantic concepts and keywords from video transcripts for their representation, and (iii) Apache Spark as Big Data technology for scalability. Several classifiers are trained on the feature vectors extracted by Cognitive Computing tools. Then, we compared our approach with other combinations of state-of-the-art feature types and classifiers over a large-scale dataset we collected from Coursera. Considering the experimental results, we expect our approach can facilitate the development of Learning Analytics tools powered by Cognitive Computing to support content managers on micro-learning video management while improving how learners search videos. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:468 / 477
页数:10
相关论文
共 50 条
  • [21] Visual Context Learning with Big Data Analytics
    Chandrashekar, Mayanka
    Lee, Yugyung
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 600 - 607
  • [22] Machine learning for Big Data analytics in plants
    Ma, Chuang
    Zhang, Hao Helen
    Wang, Xiangfeng
    TRENDS IN PLANT SCIENCE, 2014, 19 (12) : 798 - 808
  • [23] Data science in education: Big data and learning analytics
    Klasnja-Milicevic, Aleksandra
    Ivanovic, Mirjana
    Budimac, Zoran
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2017, 25 (06) : 1066 - 1078
  • [24] Continuous Clustering in Big Data Learning Analytics
    Govindarajan, Kannan
    Somasundaram, Thamarai Selvi
    Kumar, Vivekanandan S.
    Kinshuk
    2013 IEEE FIFTH INTERNATIONAL CONFERENCE ON TECHNOLOGY FOR EDUCATION (T4E 2013), 2013, : 61 - 64
  • [25] Editorial: Deep Learning for Big Data Analytics
    Yulei Wu
    Fei Hao
    Sambit Bakshi
    Haojun Huang
    Mobile Networks and Applications, 2021, 26 : 2315 - 2317
  • [26] Big Data Analytics - an Influence of Deep Learning
    Chandralekha, C.
    Divya, S.
    Aiswarya, N.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (06): : 220 - 223
  • [27] Editorial: Deep Learning for Big Data Analytics
    Wu, Yulei
    Hao, Fei
    Bakshi, Sambit
    Huang, Haojun
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (06): : 2315 - 2317
  • [28] Significance of deep learning on big data analytics
    Mao, Jilei
    Mao, Zijun
    CIVIL, ARCHITECTURE AND ENVIRONMENTAL ENGINEERING, VOLS 1 AND 2, 2017, : 1597 - 1600
  • [29] Big Data, Predictive Analytics and Machine Learning
    Ongsulee, Pariwat
    Chotchaung, Veena
    Bamrungsi, Eak
    Rodcheewit, Thanaporn
    2018 16TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2018, : 37 - 42
  • [30] Machine Learning Technologies for Big Data Analytics
    Gandomi, Amir H.
    Chen, Fang
    Abualigah, Laith
    ELECTRONICS, 2022, 11 (03)