SINGULAR SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN A BALL

被引:4
|
作者
Flores, Isabel [1 ]
机构
[1] Univ Concepcion, Dept Matemat, Fac Ciencias Fis & Matemat, Concepcion, Chile
关键词
Radial singular solutions; semilinear elliptic equations; SEMILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; GROUND-STATES; UNIQUENESS;
D O I
10.3934/cpaa.2009.8.673
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B denote the unit ball in R-N, N >= 3. We consider the classical Brezis-Nirenberg problem {Delta u + lambda u + u(N+2/N-2) = 0 in B u > 0 in B u = 0 on partial derivative B where lambda is a constant. It is proven in [3] that this problem has a classical solution if and only if (lambda) under bar < lambda < lambda(1) where (lambda) under bar = 0 if N >= 4, (lambda) under bar = lambda(1)/4 if N = 3. This solution is found to be unique in [17]. We prove that there is a number lambda(*) and a continuous function a(lambda) >= 0 decreasing in ((lambda) under bar, lambda(*)], increasing in [lambda(*),lambda(1)) such that for each lambda in this range and each mu is an element of (a(lambda), infinity) there exist a mu-periodic function w(mu)(t) and two distinct radial solutions u(mu j), j = 1, 2, singular at the origin, with u(mu j)(x) similar to |x|(-N-2/2). This clarifies a previous result by Benguria, Dolbeault and Esteban in [2], where a existence of a continuum of singular solutions for each lambda is an element of ((lambda) under bar, lambda(1)) was found.
引用
收藏
页码:673 / 682
页数:10
相关论文
共 50 条
  • [41] LEAST ENERGY NODAL SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN DIMENSION N=5
    Roselli, Paolo
    Willem, Michel
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) : 59 - 69
  • [42] An integral type Brezis-Nirenberg problem on the Heisenberg group
    Han, Yazhou
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (05) : 4544 - 4565
  • [43] The Brezis-Nirenberg problem near criticality in dimension 3
    del Pino, M
    Dolbeault, J
    Musso, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (12): : 1405 - 1456
  • [44] The solution gap of the Brezis-Nirenberg problem on the hyperbolic space
    Benguria, Soledad
    [J]. MONATSHEFTE FUR MATHEMATIK, 2016, 181 (03): : 537 - 559
  • [45] Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem
    Iacopetti, Alessandro
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) : 1649 - 1682
  • [46] The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four
    Gianni Arioli
    Filippo Gazzola
    Hans-Christoph Grunau
    Edoardo Sassone
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 69 - 90
  • [47] The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four
    Arioli, Gianni
    Gazzola, Filippo
    Grunau, Hans-Christoph
    Sassone, Edoardo
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2): : 69 - 90
  • [48] Non-degeneracy of themulti-bump solutions to the Brezis-Nirenberg problem
    Chen, Haixia
    Wang, Chunhua
    Xie, Huafei
    Zhou, Yang
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 203 (3) : 1115 - 1136
  • [49] The Brezis-Nirenberg problem for the curl-curl operator
    Mederski, Jaroslaw
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (05) : 1345 - 1380
  • [50] MULTIPLE SOLUTIONS FOR BREZIS-NIRENBERG PROBLEMS WITH FRACTIONAL LAPLACIAN
    Guo, Hui
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,