Random geometric problems on [0,1]2

被引:0
|
作者
Díaz, J [1 ]
Petit, J [1 ]
Serna, M [1 ]
机构
[1] Univ Politecn Cataluna, Dept Llenguatges & Sistemes, ES-08034 Barcelona, Spain
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we survey the work done for graphs on random geometric models. We present some heuristics for the problem of the Minimal linear arrangement on [0, 1](2) and we conclude with a collection of open problems.
引用
收藏
页码:294 / 306
页数:13
相关论文
共 50 条
  • [31] On the membership problem for the {0,1/2}-closure
    Letchford, Adam N.
    Pokutta, Sebastian
    Schulz, Andreas S.
    OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 301 - 304
  • [32] (0,1)-MATRICES
    KHOMENKO, NP
    VYVROT, TM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1976, (10): : 887 - 889
  • [33] A characterization of (λ, 2)-stable (0,1) matrices
    Bruen, Aiden A.
    Bruen, Trevor C.
    Silverman, Robert
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (04) : 814 - 819
  • [34] Portugal 0,1
    Pedrosa, Celia
    COLOQUIO-LETRAS, 2009, (172): : 232 - 235
  • [35] Solutions in the (1/2,0) ⊕ (0,1/2) Representation of the Lorentz Group
    Dvoeglazov, Valeriy V.
    11TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, 2019, 1239
  • [36] (0,1)-MATRICES
    JAGERS, AA
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (06): : 505 - 506
  • [37] Universal functions for classes Lp[0,1)2, p∈(0,1), with respect to the double Walsh system
    Sargsyan, Artsrun
    Grigoryan, Martin
    POSITIVITY, 2019, 23 (05) : 1261 - 1280
  • [38] The coordinate system μ x κ on L2([0,1]) x L2([0,1]) for the AKNS operator
    Amour, Laurent
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (1-2) : 83 - 93
  • [39] On a Property of the Franklin System in C[0,1] and L1[0,1]
    Mikayelyan, V. G.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 284 - 287
  • [40] TIGHTNESS OF PROBABILITIES ON C([0,1],PHI') AND D([0,1],PHI')
    MITOMA, I
    ANNALS OF PROBABILITY, 1983, 11 (04): : 989 - 999