Random geometric problems on [0,1]2

被引:0
|
作者
Díaz, J [1 ]
Petit, J [1 ]
Serna, M [1 ]
机构
[1] Univ Politecn Cataluna, Dept Llenguatges & Sistemes, ES-08034 Barcelona, Spain
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we survey the work done for graphs on random geometric models. We present some heuristics for the problem of the Minimal linear arrangement on [0, 1](2) and we conclude with a collection of open problems.
引用
收藏
页码:294 / 306
页数:13
相关论文
共 50 条
  • [1] ASYMPTOTICS IN RANDOM (0,1)-MATRICES
    ONEIL, PE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 25 (02) : 290 - &
  • [2] GEOMETRIC MATRICES AND AN INEQUALITY FOR (0,1)-MATRICES
    VARGA, LE
    DISCRETE MATHEMATICS, 1990, 82 (03) : 303 - 315
  • [3] Bijections between (0,1), (0,1], and [0,1]
    Witkowski, Alfred
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (02): : 139 - 139
  • [4] (0,1) HYPERBOLIC PROGRAMMING PROBLEMS
    ROBILLARD, P
    NAVAL RESEARCH LOGISTICS QUARTERLY, 1971, 18 (01): : 47 - +
  • [5] SIMPLE TIGHTNESS CONDITION FOR RANDOM ELEMENTS ON C([0,1])2
    NAGAI, T
    BULLETIN OF MATHEMATICAL STATISTICS, 1974, 16 (1-2): : 67 - 82
  • [6] Littlewood-type problems on [0,1]
    Borwein, P
    Erdély, T
    Kós, G
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 : 22 - 46
  • [7] SINGULAR RANDOM MEASURE GENERATED BY SPLITTING [0,1]
    PEYRIERE, J
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (03): : 289 - 297
  • [8] On some problems in the space C(n)[0,1]
    1600, Politechnica University of Bucharest (78):
  • [9] W0_sample = np.random.normal (0,1)?
    Ebelt, J.
    Krippendorf, S.
    Schachner, A.
    PHYSICS LETTERS B, 2024, 855
  • [10] ON SOME PROBLEMS IN THE SPACE C(n)[0,1]
    Garayev, M. T.
    Guediri, H.
    Sadraoui, H.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 147 - 156