An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation

被引:57
|
作者
Shu, Xing [1 ]
Li, Guang [2 ]
Shen, Jiangwei [1 ]
Lei, Zhenzhen [3 ]
Chen, Zheng [1 ,2 ]
Liu, Yonggang [4 ,5 ]
机构
[1] Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Yunnan, Peoples R China
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[3] Chongqing Univ Sci & Technol, Sch Mech & Power Engn, Chongqing 401331, Peoples R China
[4] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[5] Chongqing Univ, Sch Automot Engn, Chongqing 400044, Peoples R China
基金
欧盟地平线“2020”; 国家重点研发计划;
关键词
Adaptive extended kalman filter; State of charge; State of health; State of power; Temperature compensation; STATE-OF-HEALTH; CHARGE ESTIMATION METHODS; EXTENDED KALMAN FILTER; MODEL; POWER; PREDICTION; MANAGEMENT; CHALLENGES; FRAMEWORK;
D O I
10.1016/j.energy.2020.118262
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate estimation of inner status is vital for safe reliable operation of lithium-ion batteries. In this study, a temperature compensation-based adaptive algorithm is proposed to simultaneously estimate the multi-state of lithium-ion batteries including state of charge, state of health and state of power. In the proposed co-estimation algorithm, the state of health is identified by the open circuit voltage-based feature point method. On the basis of accurate capacity prediction, the state of charge is estimated by the adaptive extended Kalman filter with a forgetting factor considering temperature correction. The state of power is determined according to the multi constraints subject to state of charge, operating temperature and maximum current duration. The substantial experimental validations in terms of different current profiles, aging status and time-varying temperature operating conditions highlight that the proposed algorithm furnishes preferable estimation precision with certain robustness, compared with the traditional extended Kalman filter and the adaptive extended Kalman filter. Moreover, the battery pack validation is performed to further justify the feasibility of proposed algorithm when employed in a product battery management system. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Adaptive method for sensorless temperature estimation over the lifetime of lithium-ion batteries
    Ludwig, S.
    Zilberman, I
    Oberbauer, A.
    Rogge, M.
    Fischer, M.
    Rehm, M.
    Jossen, A.
    JOURNAL OF POWER SOURCES, 2022, 521
  • [22] An enhanced multi-constraint state of power estimation algorithm for lithium-ion batteries in electric vehicles
    Guo, Ruohan
    Shen, Weixiang
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [23] A novel state of charge estimation method for lithium-ion batteries based on bias compensation
    Ouyang, Tiancheng
    Xu, Peihang
    Chen, Jingxian
    Su, Zixiang
    Huang, Guicong
    Chen, Nan
    ENERGY, 2021, 226
  • [24] A review of multi-state joint estimation for lithium-ion battery: Research status and suggestions
    Liu, Fang
    Yu, Dan
    Shao, Chen
    Liu, Xinhui
    Su, Weixing
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [25] An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter
    Zeng, Zhibing
    Tian, Jindong
    Li, Dong
    Tian, Yong
    ENERGIES, 2018, 11 (01):
  • [26] Online parameter and state estimation of lithium-ion batteries under temperature effects
    Chaoui, Hicham
    Gualous, Hamid
    ELECTRIC POWER SYSTEMS RESEARCH, 2017, 145 : 73 - 82
  • [27] An adaptive state of charge estimator for lithium-ion batteries
    Ali, Muhammad U.
    Khan, Hafiz F.
    Masood, Haris
    Kallu, Karam D.
    Ibrahim, Malik M.
    Zafar, Amad
    Oh, Semin
    Kim, Sangil
    Energy Science and Engineering, 2022, 10 (07): : 2333 - 2347
  • [28] An adaptive state of charge estimator for lithium-ion batteries
    Ali, Muhammad U.
    Khan, Hafiz F.
    Masood, Haris
    Kallu, Karam D.
    Ibrahim, Malik M.
    Zafar, Amad
    Oh, Semin
    Kim, Sangil
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (07) : 2333 - 2347
  • [29] State of charge and state of health estimation of Lithium-Ion batteries
    Buchman, Attila
    Lung, Claudiu
    2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 382 - 385
  • [30] Fast Estimation of State of Charge for Lithium-Ion Batteries
    Wu, Shing-Lih
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    ENERGIES, 2014, 7 (05) : 3438 - 3452