Ionic liquid-based gel polymer electrolyte containing zwitterion for lithium-oxygen batteries

被引:21
|
作者
Woo, Hyun-Sik [1 ]
Son, Hyebeen [1 ]
Min, Ji-Yun [1 ]
Rhee, Junki [2 ]
Lee, Ho-Taek [2 ]
Kim, Dong-Won [1 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
[2] Hyundai Motor Co, Res & Dev Div, Gyeonggi Do 18280, South Korea
关键词
Lithium-oxygen battery; Gel polymer electrolyte; Ionic liquid; Zwitterion; Lithium dendrite; HIGH-ENERGY-DENSITY; LI-O-2; BATTERY; MOLTEN-SALTS; LI-METAL; PERFORMANCE; REDUCTION; TRANSPORT; SURFACE;
D O I
10.1016/j.electacta.2020.136248
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The key challenge of high energy density lithium-oxygen batteries is to develop a stable electrolyte system not only to suppress growth of lithium dendrite and solvent evaporation but also to resist the attack by superoxide anion radical formed at the cathode. Gel polymer electrolyte can effectively encapsulate organic solvent in the cell, suppress electrolyte decomposition and provide stable interfacial characteristics with lithium electrode. In this study, a three-dimensional cross-linked poly(methyl methacrylate)-based gel polymer electrolyte (GPE) containing non-volatile ionic liquid and zwitterion was synthesized and characterized for lithium-oxygen batteries. In this GPE, a zwitterion was proved to improve the transport properties of Lithorn ions and enhance the interfacial stability towards the lithium electrode. As a result, the lithium-oxygen cell assembled with GPE containing ionic liquid and zwitterion exhibited a good cycling stability at a constant current density of 0.25 mA cm(-2). (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Ionic Liquid-Based Membranes as Electrolytes for Advanced Lithium Polymer Batteries
    Navarra, M. A.
    Manzi, J.
    Lombardo, L.
    Panero, S.
    Scrosati, Bruno
    CHEMSUSCHEM, 2011, 4 (01) : 125 - 130
  • [22] Investigation of ionic liquid composite electrolyte for lithium-oxygen battery
    Cai, Kedi
    Pu, Weihua
    Gao, Yong
    Hou, Junbo
    Deng, Changsheng
    Wang, Cheng
    Mao, Zongqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 11023 - 11027
  • [23] Poly(Ionic Liquid)-Based Composite Gel Electrolyte for Lithium Batteries
    Safa, Meer
    Adelowo, Ebenezer
    Chamaani, Amir
    Chawla, Neha
    Baboukani, Amin Rabiei
    Herndon, Marcus
    Wang, Chunlei
    El-Zahab, Bilal
    CHEMELECTROCHEM, 2019, 6 (13): : 3319 - 3326
  • [24] Ionic liquid-based self-healing gel electrolyte for high-performance lithium metal batteries
    Chen, Xiaoyi
    Yi, Lingguang
    Liu, Jiali
    Luo, Zhigao
    Shen, Yongqiang
    Wang, Xianyou
    JOURNAL OF POWER SOURCES, 2024, 603
  • [25] PMMA-LiTFSI based gel polymer electrolyte for lithium-oxygen cell application
    Kufian, M. Z.
    Ramesh, S.
    Arof, A. K.
    OPTICAL MATERIALS, 2021, 120
  • [26] A Lithiated Perfluorinated Sulfonic Acid Polymer Electrolyte for Lithium-Oxygen Batteries
    Shi, Yanqiong
    Wu, Chaolumen
    Li, Lei
    Yang, Jun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) : A2031 - A2037
  • [27] Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries
    Wang, Jia-Zhao
    Chou, Shu-Lei
    Chew, Sau-Yen
    Sun, Jia-Zeng
    Forsyth, Maria
    MacFarlane, Douglas R.
    Liu, Hua-Kun
    SOLID STATE IONICS, 2008, 179 (40) : 2379 - 2382
  • [28] Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
    Zhang, Ruisi
    Chen, Yuanfen
    Montazami, Reza
    MATERIALS, 2015, 8 (05): : 2735 - 2748
  • [29] Influence of ionic interactions on lithium diffusion properties in ionic liquid-based gel polymer electrolytes
    Porthault, H.
    Piana, G.
    Duffault, J. M.
    Franger, S.
    ELECTROCHIMICA ACTA, 2020, 354
  • [30] Polyethylene oxide and ionic liquid-based solid polymer electrolyte for rechargeable magnesium batteries
    H. N. M. Sarangika
    M. A. K. L. Dissanayake
    G. K. R. Senadeera
    R. R. D. V. Rathnayake
    H. M. J. C. Pitawala
    Ionics, 2017, 23 : 2829 - 2835