Investigation of the ionization of neon by an attosecond XUV pulse with the time-dependent Schrodinger equation

被引:0
|
作者
Carette, T. [1 ]
Argenti, L. [2 ]
Lindroth, E. [1 ]
机构
[1] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden
[2] Univ Autonoma Madrid, Dept Quim, Madrid 28049, Spain
关键词
D O I
10.1088/1742-6596/388/2/022020
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We investigate theoretically the single ionization of neon by an attosecond XUV pulse, aiming at a better understanding of the outgoing electron wave-packet in the early stages of its detachment. To do so, we integrate the one-electron time-dependent Schrodinger equation numerically. The non-local interaction with the spectator electrons in the time-dependent hamiltonian is accounted for with a configuration-averaged effective Hartree-Fock potential.
引用
收藏
页数:1
相关论文
共 50 条
  • [41] ITVOLT: An iterative solver for the time-dependent Schrodinger equation
    Schneider, Ryan
    Gharibnejad, Heman
    Schneider, Barry I.
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 291
  • [42] Fractional time-dependent Schrodinger equation on the Heisenberg group
    Urban, Roman
    Zienkiewicz, Jacek
    MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (04) : 931 - 948
  • [43] The time-dependent Schrodinger equation with piecewise constant potentials
    Sheils, Natalie E.
    Deconinck, Bernard
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2020, 31 (01) : 57 - 83
  • [44] A general procedure for solving the time-dependent Schrodinger equation
    Chen, CY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31): : 6589 - 6599
  • [45] OPTIMIZATION OF APPROXIMATE SOLUTIONS TO TIME-DEPENDENT SCHRODINGER EQUATION
    WEGLEIN, AB
    PHYSICAL REVIEW A, 1978, 17 (06): : 1810 - 1818
  • [46] EXPONENTIAL PROPAGATORS (INTEGRATORS) FOR THE TIME-DEPENDENT SCHRODINGER EQUATION
    Bandrauk, Andre D.
    Lu, Huizhong
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2013, 12 (06):
  • [47] Symplectic integrators tailored to the time-dependent Schrodinger equation
    Gray, SK
    Manolopoulos, DE
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (18): : 7099 - 7112
  • [48] TIME-DEPENDENT SCHRODINGER EQUATION WITH ONE KNOWN SOLUTION
    Fityo, T. V.
    Tkachuk, V. M.
    JOURNAL OF PHYSICAL STUDIES, 2005, 9 (04): : 299 - 303
  • [49] Exponential propagators for the Schrodinger equation with a time-dependent potential
    Bader, Philipp
    Blanes, Sergio
    Kopylov, Nikita
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [50] THE RANDOM SCHRODINGER EQUATION: HOMOGENIZATION IN TIME-DEPENDENT POTENTIALS
    Gu, Yu
    Ryzhik, Lenya
    MULTISCALE MODELING & SIMULATION, 2016, 14 (01): : 323 - 363