Invertibility of Multipliers in Hilbert C*-Modules

被引:0
|
作者
Azandaryani, Morteza Mirzaee [1 ]
机构
[1] Univ Qom, Dept Math, Qom, Iran
关键词
Hilbert C*-module; Bessel multiplier; semi-normalized symbol; invertibility; BESSEL MULTIPLIERS; G-FRAMES;
D O I
10.2298/FIL1817073M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some sufficient conditions under which Bessel multipliers in Hilbert C*-modules with semi-normalized symbols are invertible and we calculate the inverses. Especially we consider the invertibility of Bessel multipliers when the elements of their symbols are positive and when their Bessel sequences are equivalent, duals, modular Riesz bases or stable under small perturbations. We show that in these cases the inverse of a Bessel multiplier can be represented as a Bessel multiplier.
引用
收藏
页码:6073 / 6085
页数:13
相关论文
共 50 条
  • [1] Invertibility of Multipliers in Hilbert C*-modules
    Rashidi-Kouchi, M.
    Rahimi, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 21 - 37
  • [2] INVERTIBILITY OF GENERALIZED BESSEL MULTIPLIERS IN HILBERT C*-MODULES
    Tabadkan, Gholamreza Abbaspour
    Hosseinnezhad, Hessam
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 461 - 479
  • [3] Modular frames and invertibility of multipliers in Hilbert C*-modules
    Ghobadzadeh, Fatemeh
    Najati, A.
    Osgooei, Elnaz
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (08): : 1568 - 1584
  • [4] Invertibility of g-frame multipliers and Bessel multipliers for unitary systems in Hilbert C*-modules
    Xiang, Zhong-Qi
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (08): : 1663 - 1681
  • [5] BESSEL MULTIPLIERS IN HILBERT C*-MODULES
    Khosravi, Amir
    Azandaryani, Morteza Mirzaee
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (03): : 153 - 163
  • [6] THE WOVEN FRAME OF MULTIPLIERS IN HILBERT C*-MODULES
    Irani, Mona Naroei
    Nazari, Akbar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (02): : 257 - 266
  • [7] Equivalent projective representations on Hilbert C*-modules and their multipliers
    Costache, Tania-Luminita
    BSG PROCEEDINGS 19, 2012, 19 : 27 - 31
  • [8] CONTROLLED MULTIPLIERS WITH TWO OPERATORS IN HILBERT C*-MODULES
    Rashidi-Kouchi, M.
    Rahimi, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (03): : 872 - 883
  • [9] Hilbert C*-modules and projective representations associated with multipliers
    Heo, Jaeseong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) : 499 - 505
  • [10] BESSEL MULTIPLIERS AND APPROXIMATE DUALS IN HILBERT C* -MODULES
    Azandaryani, Morteza Mirzaee
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1063 - 1079