A packing dimension theorem for Gaussian random fields

被引:7
|
作者
Xiao, Yimin [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
FRACTIONAL BROWNIAN-MOTION; PROJECTIONS;
D O I
10.1016/j.spl.2008.07.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = {X(t), t is an element of R-N} be a Gaussian random field with values in R-d defined by X (t) = (X-1 (t), ..., X-d (t)), for all(t) is an element of R-N, where X-l,..., X-d are independent copies of a centered Gaussian random field X-0. Under certain general conditions. Xiao [Xiao, Y.. 2007. Strong local nondeterminism and the sample path properties of Gaussian random fields. In: Lai, Tze Leung, Shao, Qman, Qian, Lianfen (Eds.), Asymptotic Theory in Probability and Statistics with Applications. Higher Education Press, Beijing, pp. 136-176] defined an upper index alpha* and a lower index a.. for X-0 and showed that the Hausdorff dimensions of the range X ([0, 1](N)) and graph Gr X ([0, 1](N)) are determined by the upper index a*. In this paper, we prove that the packing dimensions of X ([0. 1](N)) and GrX([0, 1](N)) are determined by the lower index alpha* of X-0. Namely, dim(P) X ([0, 1](N)) = min {d, N/alpha(*)}, a.s. and dim(P) Gr X ([0, 1](N)) = min {N/alpha(*,) N + (1-alpha(*))d}, a.s. This verifies a conjecture of Xiao in the above-cited reference. Our method is based on the potential-theoretic approach to packing dimension due to Falconer and Howroyd [Falconer, K.J., Howroyd, J.D., 1997. Packing dimensions for projections and dimension profiles. Math. Proc. Cambridge Philos. Soc. 121, 269-286]. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 97
页数:10
相关论文
共 50 条
  • [1] Packing Dimension of Space-time Anisotropic Gaussian Random Fields
    Zhen Long CHEN
    Jun WANG
    Dong Sheng WU
    ActaMathematicaSinica,EnglishSeries, 2021, (12) : 1826 - 1840
  • [2] Packing Dimension of Space-time Anisotropic Gaussian Random Fields
    Chen, Zhen Long
    Wang, Jun
    Wu, Dong Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (12) : 1826 - 1840
  • [3] Packing Dimension of Space-time Anisotropic Gaussian Random Fields
    Zhen Long Chen
    Jun Wang
    Dong Sheng Wu
    Acta Mathematica Sinica, English Series, 2021, 37 : 1826 - 1840
  • [4] Gaussian Fields and Random Packing
    Yu. Baryshnikov
    J. E. Yukich
    Journal of Statistical Physics, 2003, 111 : 443 - 463
  • [5] Gaussian fields and random packing
    Baryshnikov, Y
    Yukich, JE
    JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (1-2) : 443 - 463
  • [6] THEOREM ON GAUSSIAN RANDOM FIELDS
    DEO, CM
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1973, 18 (02): : 384 - 387
  • [7] Packing dimensions of the images of Gaussian random fields
    Du, Yali
    Miao, Junjie
    Wu, Dongsheng
    Xiao, Yimin
    STATISTICS & PROBABILITY LETTERS, 2015, 106 : 209 - 217
  • [8] Uniform dimension results for Gaussian random fields
    WU DongSheng1 & XIAO YiMin2
    Science China Mathematics, 2009, (07) : 1478 - 1496
  • [9] Uniform dimension results for Gaussian random fields
    DongSheng Wu
    YiMin Xiao
    Science in China Series A: Mathematics, 2009, 52 : 1478 - 1496
  • [10] Uniform dimension results for Gaussian random fields
    Wu DongSheng
    Xiao YiMin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (07): : 1478 - 1496