A TEMPORAL MODEL FOR TASK-BASED FUNCTIONAL MR IMAGES

被引:0
|
作者
Lin, Claire Yilin [1 ]
Noll, Douglas C. [2 ]
Fessler, Jeffrey A. [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Michigan, BME Dept, Ann Arbor, MI 48109 USA
[3] Univ Michigan, EECS Dept, Ann Arbor, MI 48109 USA
关键词
D O I
10.1109/isbi45749.2020.9098401
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
To better identify task-activated brain regions in task-based functional magnetic resonance imaging (tb-fMRI), various space-time models have been used to reconstruct image sequences from k-space data. These models decompose a fMRI timecourse into a static background and a dynamic foreground, aiming to separate task-correlated components from non-task signals. This paper proposes a model based on assumptions of the activation waveform shape and smoothness of the timecourse, and compare it to two contemporary tb-fMRI decomposition models. We experiment in the image domain using a simulated task with known region of interest, and a real visual task. The proposed model yields fewer false activations in task activation maps.
引用
收藏
页码:1040 / 1043
页数:4
相关论文
共 50 条
  • [21] Analysis of task-based functional MRI data preprocessed with fMRIPrep
    Oscar Esteban
    Rastko Ciric
    Karolina Finc
    Ross W. Blair
    Christopher J. Markiewicz
    Craig A. Moodie
    James D. Kent
    Mathias Goncalves
    Elizabeth DuPre
    Daniel E. P. Gomez
    Zhifang Ye
    Taylor Salo
    Romain Valabregue
    Inge K. Amlien
    Franziskus Liem
    Nir Jacoby
    Hrvoje Stojić
    Matthew Cieslak
    Sebastian Urchs
    Yaroslav O. Halchenko
    Satrajit S. Ghosh
    Alejandro De La Vega
    Tal Yarkoni
    Jessey Wright
    William H. Thompson
    Russell A. Poldrack
    Krzysztof J. Gorgolewski
    Nature Protocols, 2020, 15 : 2186 - 2202
  • [22] Analysis of task-based functional MRI data preprocessed with fMRIPrep
    Esteban, Oscar
    Ciric, Rastko
    Finc, Karolina
    Blair, Ross
    Markiewicz, Christopher J.
    Moodie, Craig A.
    Kent, James D.
    Goncalves, Mathias
    DuPre, Elizabeth
    Gomez, Daniel E. P.
    Ye, Zhifang
    Salo, Taylor
    Valabregue, Romain
    Amlien, Inge K.
    Liem, Franziskus
    Jacoby, Nir
    Stojic, Hrvoje
    Cieslak, Matthew
    Urchs, Sebastian
    Halchenko, Yaroslav O.
    Ghosh, Satrajit S.
    De La Vega, Alejandro
    Yarkoni, Tal
    Wright, Jessey
    Thompson, William H.
    Poldrack, Russell A.
    Gorgolewski, Krzysztof J.
    NATURE PROTOCOLS, 2020, 15 (07) : 2186 - 2202
  • [23] Lower Limb Task-Based Functional Connectivity Is Altered in Stroke
    Vinehout, Kaleb
    Schmit, Brian D.
    Schindler-Ivens, Sheila
    BRAIN CONNECTIVITY, 2019, 9 (04) : 365 - 377
  • [24] Capturing dynamic patterns of task-based functional connectivity with EEG
    Karamzadeh, Nader
    Medvedev, Andrei
    Azari, Afrouz
    Gandjbakhche, Amir
    Najafizadeh, Laleh
    NEUROIMAGE, 2013, 66 : 311 - 317
  • [25] A task-based model for minimizing energy consumption in WSNs
    Adnan Alrabea
    Omar A. Alzubi
    Jafar A. Alzubi
    Energy Systems, 2022, 13 : 671 - 688
  • [26] TASK-BASED EXPLANATIONS
    TANNER, MC
    EXPERT SYSTEMS WITH APPLICATIONS, 1995, 8 (04) : 505 - 512
  • [27] Task-based learning
    Race, P
    MEDICAL EDUCATION, 2000, 34 (05) : 335 - 336
  • [28] On Task-based Syllabus
    毕会英
    张琦
    海外英语, 2011, (10) : 174 - 175
  • [29] A temporal decomposition method for identifying venous effects in task-based fMRI
    Kay, Kendrick
    Jamison, Keith W.
    Zhang, Ru-Yuan
    Ugurbil, Kamil
    NATURE METHODS, 2020, 17 (10) : 1033 - +
  • [30] Task-based Government Organization Business Collaboration Model
    Qiu, Jiangnan
    Shi, Huayan
    Wang, Yanzhang
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 5458 - 5461