DIFFUSION MODELS FOR SPIN TRANSPORT DERIVED FROM THE SPINOR BOLTZMANN EQUATION

被引:13
|
作者
El Hajj, Raymond [1 ,2 ,3 ,4 ]
机构
[1] INSA Rennes, IRMAR, F-35043 Rennes, France
[2] CNRS, UMR 6625, F-35043 Rennes, France
[3] Univ Europeenne Bretagne, F-35043 Rennes, France
[4] Inst Natl Sci Appl Rennes, F-35043 Rennes, France
关键词
Spinor Boltzmann equation; spin-orbit coupling; spin-flip interactions; diffusion limit; decoherence limit; two-component drift-diffusion model; spin-vector drift-diffusion model; MACROSCOPIC MODELS; ENERGY-TRANSPORT; LIMITS; RELAXATION;
D O I
10.4310/CMS.2014.v12.n3.a9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to derive and analyze diffusion models for semiconductor spintronics. We begin by presenting and studying the so called " spinor" Boltzmann equation. Starting then from a rescaled version of linear Boltzmann equation with different spin-flip and non spin-flip collision operators, different continuum (drift-diffusion) models are derived. By comparing the strength of the spin-orbit scattering with the scaled mean free paths, we explain how some models existing in the literature (like the two-component models) can be obtained from the spinor Boltzmann equation. A new spin-vector drift-diffusion model keeping spin relaxation and spin precession effects due to the spin-orbit coupling in semiconductor structures is derived and some of its mathematical properties are checked.
引用
收藏
页码:565 / 592
页数:28
相关论文
共 50 条
  • [31] Boltzmann Transport Equation of Transverse Spin Current in Weak-Coupling Limit
    Tsukahara, Hiroshi
    Imamura, Hiroshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (11)
  • [32] The fractional Boltzmann transport equation
    El-Nabulsi, Rami Ahmad
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1568 - 1575
  • [33] Modified Boltzmann transport equation
    Magas, VK
    Csernai, LP
    Molnár, E
    Nyiri, A
    Tamosiunas, K
    NUCLEAR PHYSICS A, 2005, 749 : 202C - 205C
  • [34] ON THE SOLUTION OF THE BOLTZMANN TRANSPORT EQUATION
    FOGARASSY, B
    PHYSICA STATUS SOLIDI, 1963, 3 (09): : 1646 - 1660
  • [35] DIFFUSION LIMIT FOR THE LINEAR BOLTZMANN-EQUATION OF THE NEUTRON-TRANSPORT THEORY
    BANASIAK, J
    MIKA, JR
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (13) : 1071 - 1087
  • [36] A LINEAR ALGEBRAIC ANALYSIS OF DIFFUSION SYNTHETIC ACCELERATION FOR THE BOLTZMANN TRANSPORT-EQUATION
    ASHBY, SF
    BROWN, PN
    DORR, MR
    HINDMARSH, AC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) : 128 - 178
  • [37] Spin transport in coupled spinor Bose gases
    McGuirk, J. M.
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [38] From the Boltzmann to the lattice-Boltzmann equation: Beyond BGK collision models
    Philippi, Paulo Cesar
    Hegele, Luiz Adolfo, Jr.
    Surmas, Rodrigo
    Siebert, Diogo Nardelli
    Dos Santos, Luis Orlando Emerich
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (04): : 556 - 565
  • [39] Coupling Mesoscopic Boltzmann Transport Equation and Macroscopic Heat Diffusion Equation for Multiscale Phonon Heat Conduction
    Cheng, W.
    Alkurdi, A.
    Chapuis, P. -O.
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2020, 24 (3-4) : 150 - 167
  • [40] A LATTICE BOLTZMANN-EQUATION FOR DIFFUSION
    WOLFGLADROW, D
    JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (5-6) : 1023 - 1032