Evaluation of simultaneous effects of inlet stagnation pressure and heat transfer on condensing water-vapor flow in a supersonic Laval nozzle

被引:22
|
作者
Rad, E. Amiri [1 ]
Mahpeykar, M. R. [2 ]
Teymourtash, A. R. [2 ]
机构
[1] Hakim Sabzevari Univ, Dept Mech Engn, Sabzevar, Iran
[2] Ferdowsi Univ Mashhad, Dept Mech Engn, Mashhad, Iran
关键词
Condensation flow; Inlet stagnation pressure; Laval nozzle; Nucleation; Supercooled steam; Volumetric heat transfer; NUCLEATION; STEAM; CONDENSATION; GROWTH;
D O I
10.1016/j.scient.2012.12.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In supersonic two-phase flows of steam, under the influence of rapid expansion, the vapor becomes supersaturated. Following this condition, nucleation happens during the vapor phase; formed tiny droplets grow along the passage and, therefore, the condensation phenomenon occurs. The effects of the condensation phenomenon in power steam turbines include efficiency drop and mechanical damage. In the previous work of the authors, volumetric heating was introduced as an approach towards reducing the mentioned damage and loss. However, further investigations revealed that heating decreases the mass flow rate, which can be increased by adjusting the inlet stagnation pressure. In this paper, using a semi-analytical and a one-dimensional modeling approach, the simultaneous effects of volumetric heat transfer and inlet stagnation pressure variation are investigated in order to remedy the mass flow rate reduction. The results show that increasing the inlet stagnation pressure up to 5% can fix the mass flow rate of the non-adiabatic flow, compared to the adiabatic flow under the same conditions. (C) 2013 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 22 条