Topological change in mean convex mean curvature flow

被引:9
|
作者
White, Brian [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SINGULARITIES; SURFACES; SETS;
D O I
10.1007/s00222-012-0397-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the mean curvature flow of an (n+1)-dimensional compact, mean convex region in Euclidean space (or, if n < 7, in a Riemannian manifold). We prove that elements of the mth homotopy group of the complementary region can die only if there is a shrinking S (k) xR (n-k) singularity for some ka parts per thousand currency signm. We also prove that for each m with 1a parts per thousand currency signma parts per thousand currency signn, there is a nonempty open set of compact, mean convex regions K in R (n+1) with smooth boundary a,K for which the resulting mean curvature flow has a shrinking S (m) xR (n-m) singularity.
引用
收藏
页码:501 / 525
页数:25
相关论文
共 50 条