COMPARING INFERENCE METHODS FOR CONDITIONAL RANDOM FIELDS FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:0
|
作者
Hu, Yang [1 ]
Monteiro, Sildomar T. [1 ]
Saber, Eli [1 ]
机构
[1] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA
关键词
Classification; conditional random fields; support vector machines; variational inference methods;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Classification of hyperspectral images is an important method for various object-based-analysis applications in remote sensing. We propose a two-level learning algorithm combining Support Vector Machines (SVMs) and Conditional Random Fields (CRFs) to achieve accurate classification of hyperspectral images. The hyperspectral data is initially processed by SVMs into a local, pixel based classification which serves as the observations in the CRFs model for generating unary and pairwise potentials. Three inference algorithms: mean field, tree-reweighted belief propagation, and loopy belief propagation are compared in the CRF inference procedure. This two-step algorithm is tested with the publicly available AVIRIS Indian Pines data set, and results from the three listed inference methods are discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Cascaded Random Forest for Hyperspectral Image Classification
    Zhang, Youqiang
    Cao, Guo
    Li, Xuesong
    Wang, Bisheng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (04) : 1082 - 1094
  • [42] EXTENDED RANDOM WALKERS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Kang, Xudong
    Li, Shutao
    Li, Meixiu
    Benediktsson, Jon Atli
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1520 - 1523
  • [43] ROBUST HYPERSPECTRAL IMAGE CLASSIFICATION WITH REJECTION FIELDS
    Condessa, Filipe
    Bioucas-Dias, Jose
    Kovacevic, Jelena
    [J]. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [44] AN ITERATIVE INFERENCE PROCEDURE APPLYING CONDITIONAL RANDOM FIELDS FOR SIMULTANEOUS CLASSIFICATION OF LAND COVER AND LAND USE
    Albert, L.
    Rottensteiner, F.
    Heipke, C.
    [J]. ISPRS GEOSPATIAL WEEK 2015, 2015, II-3 (W5): : 369 - 376
  • [45] Hidden Conditional Ordinal Random Fields for Sequence Classification
    Kim, Minyoung
    Pavlovic, Vladimir
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6322 : 51 - 65
  • [46] CONDITIONAL RANDOM FIELDS FOR THE CLASSIFICATION OF LIDAR POINT CLOUDS
    Niemeyer, J.
    Mallet, C.
    Rottensteiner, F.
    Soergel, U.
    [J]. ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 209 - 214
  • [47] Characterizing Markov Random Fields and Coefficient of Variations as Measures of Spatial Distributions for Hyperspectral Image Classification
    Cui, Bin
    Peng, Yao
    Zhang, Hao
    Li, Wenmei
    Du, Peijun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [48] Weakly Supervised Cervical Histopathological Image Classification Using Multilayer Hidden Conditional Random Fields
    Li, Chen
    Chen, Hao
    Xue, Dan
    Hu, Zhijie
    Zhang, Le
    He, Liangzi
    Xu, Ning
    Qi, Shouliang
    Ma, He
    Sun, Hongzan
    [J]. INFORMATION TECHNOLOGY IN BIOMEDICINE, 2019, 1011 : 209 - 221
  • [49] Conditional Random Fields Based on Weighted Feature Difference Potential for Remote Sensing Image Classification
    Sun, Yi
    Tian, Yan
    Xu, Yiping
    [J]. ADVANCES IN INFORMATION AND COMMUNICATION, VOL 2, 2020, 1130 : 590 - 603
  • [50] A Lightweight Conditional Convolutional Neural Network for Hyperspectral Image Classification
    Wu, Linfeng
    Wang, Huajun
    Wang, Huiqing
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2023, 89 (07): : 413 - 423