Computation of control sets using subdivision and continuation techniques

被引:0
|
作者
Szolnoki, D [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
来源
PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5 | 2000年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key notion for the analysis of the global behavior of control systems are control sets. Control sets are subsets of the state space where approximate controllability holds: from every point in a control set one can steer arbitrarily close to any other point in the control set. In general it is not possible to find explicit formulas for control sets and their domains of attraction. Therefore numerical methods are a natural part of a systematic analysis. We will present a method for the computation of control sets, which is based on subdivision and continuation techniques.
引用
收藏
页码:2135 / 2140
页数:6
相关论文
共 50 条
  • [41] CHARACTERIZATION OF SEMISIMPLICIAL SETS BY SUBDIVISION AND GRAPHS
    FRITSCH, R
    MANUSCRIPTA MATHEMATICA, 1971, 5 (03) : 213 - &
  • [42] Cloud-assisted Control of Ground Vehicles using Adaptive Computation Offloading Techniques
    Adiththan, Arun
    Ramesh, S.
    Samii, Soheil
    PROCEEDINGS OF THE 2018 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2018, : 589 - 592
  • [43] Scalable Computation of Robust Control Invariant Sets of Nonlinear Systems
    Schaefer, Lukas
    Gruber, Felix
    Althoff, Matthias
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 755 - 770
  • [44] CONTINUATION + INTERVALS AND TECHNIQUES
    不详
    WOODWIND WORLD-BRASS & PERCUSSION, 1979, 18 (01): : 41 - 42
  • [45] On the computation of robust control invariant sets for piecewise affine systems
    Alamo, T.
    Fiacchini, M.
    Cepedas, A.
    Limons, D.
    Bravo, J. M.
    Camacho, E. F.
    ASSESSMENT AND FUTURE DIRECTIONS OF NONLINEAR MODEL PREDICTIVE CONTROL, 2007, 358 : 131 - +
  • [46] Improved computation of ellipsoidal invariant sets for saturated control systems
    Alamo, T.
    Cepeda, A.
    Limon, D.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 6216 - 6221
  • [47] On the computation of convex robust control invariant sets for nonlinear systems
    Fiacchini, M.
    Alamo, T.
    Camacho, E. F.
    AUTOMATICA, 2010, 46 (08) : 1334 - 1338
  • [48] Efficient fitting and rendering of large scattered data sets using subdivision surfaces
    Scheib, V
    Haber, J
    Lin, MC
    Seidel, HP
    COMPUTER GRAPHICS FORUM, 2002, 21 (03) : 353 - +
  • [49] Computation of normal factorisation of polynomials using resultant sets
    Karcanias, N
    Mitrouli, M
    Fatouros, S
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 107 - 112
  • [50] Motion field computation with a continuation algorithm
    Bouchara, F
    Richou, J
    NEW IMAGE PROCESSING TECHNIQUES AND APPLICATIONS: ALGORITHMS, METHODS, AND COMPONENTS II, 1997, 3101 : 13 - 20