A Meta-Analysis of Missing Data and Non-Compliance Data in Clinical Endpoint Bioequivalence Studies

被引:5
|
作者
Sun, Wanjie [1 ]
Zhou, Lingjie [2 ]
Grosser, Stella [1 ]
Kim, Carol [3 ]
机构
[1] US FDA, CDER, Off Biostat, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] US FDA, CDER, Off Gener Drugs, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
来源
关键词
Bioequivalence; Meta-analysis; Missing data; Non-compliance data; TRIALS;
D O I
10.1080/19466315.2016.1201000
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing data and noncompliance data questions are especially important in evaluating locally acting generic drugs because primary equivalence analyses in clinical endpoint bioequivalence (BE) studies are based on the per-protocol (PP) population (generally, completers and compliers). A meta-analysis using six clinical endpoint BE studies for topical drugs reveals the following: (1) An average of 22% (95% CI: 15-29%) of randomized subjects are excluded from the PP population. (2) Of these excluded subjects, half (10.6%, 95% CI: 8.3-12.8%) dropped out. Most who dropped out (6.9%, 95% CI: 5.0-8.8%) did not specify reasons. (3) Noncompliance categories include out-of-window visits (7.7%, 95% CI: 5.5%-9.8%), dosing noncompliance (<75% or >125% of dose) (5%, 95% CI: 2.7%-7.4%), and restricted medication use (3.2%, 95% CI: 1.8%-4.7%). (4) Drop out and noncompliance are not completely at random: a better treatment effect is associated with less drop out and less noncompliance. (5) Drop out and noncompliance are correlated: noncompliers are more likely to drop out, and vice versa. These results will help regulators better understand the extent and pattern of drop out and noncompliance and shed light on designing appropriate analysis population, endpoints, estimands, and investigating primary and sensitivity methods for equivalence in clinical endpoint BE studies in presence of missing and noncompliance data.
引用
下载
收藏
页码:334 / 344
页数:11
相关论文
共 50 条
  • [31] Meta-Analysis of Fructose and Cholesterol: A Concern Regarding Missing Data
    Chiavaroli, Laura
    Mirrahimi, Arash
    de Souza, Russell J.
    Sievenpiper, John L.
    JOURNAL OF NUTRITION, 2014, 144 (04): : 538 - 539
  • [32] Helicobacter pylori and cirrhosis: any missing data in the meta-analysis?
    Pellicano, Rinaldo
    Fagoonee, Sharmila
    EUROPEAN JOURNAL OF GASTROENTEROLOGY & HEPATOLOGY, 2015, 27 (02) : 182 - 183
  • [33] Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies
    Syrogiannouli, Lamprini
    Wildisen, Lea
    Meuwese, Christiaan
    Bauer, Douglas C.
    Cappola, Anne R.
    Gussekloo, Jacobijn
    den Elzen, Wendy P. J.
    Trompet, Stella
    Westendorp, Rudi G. J.
    Jukema, J. Wouter
    Ferrucci, Luigi
    Ceresini, Graziano
    Asvold, Bjorn O.
    Chaker, Layal
    Peeters, Robin P.
    Imaizumi, Misa
    Ohishi, Waka
    Vaes, Bert
    Voelzke, Henry
    Sgarbi, Jose A.
    Walsh, John P.
    Dullaart, Robin P. F.
    Bakker, Stephan J. L.
    Iacoviello, Massimo
    Rodondi, Nicolas
    Del Giovane, Cinzia
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [34] Non-compliance with randomised allocation and missing outcome data in randomised controlled trials evaluating surgical interventions: A systematic review
    Adewuyi T.E.
    MacLennan G.
    Cook J.A.
    BMC Research Notes, 8 (1)
  • [35] Meta-analysis with missing study-level sample variance data
    Chowdhry, Amit K.
    Dworkin, Robert H.
    McDermott, Michael P.
    STATISTICS IN MEDICINE, 2016, 35 (17) : 3021 - 3032
  • [36] Handling missing or incomplete data in a Bayesian network meta-analysis framework
    Azzolina, Danila
    Baldi, Ileana
    Berchialla, Paola
    Minto, Clara
    Gregori, Dario
    TRIALS, 2017, 18
  • [37] Addressing Systematic Missing Data in the Context of Causally Interpretable Meta-analysis
    Barker, David H.
    Bie, Ruofan
    Steingrimsson, Jon A.
    PREVENTION SCIENCE, 2023, 24 (08) : 1648 - 1658
  • [38] Handling missing continuous outcome data in a Bayesian network meta-analysis
    Azzolina, Danila
    Baldi, Ileana
    Minto, Clara
    Bottigliengo, Daniele
    Lorenzoni, Giulia
    Gregori, Dario
    EPIDEMIOLOGY BIOSTATISTICS AND PUBLIC HEALTH, 2018, 15 (04):
  • [39] Addressing Systematic Missing Data in the Context of Causally Interpretable Meta-analysis
    David H. Barker
    Ruofan Bie
    Jon A. Steingrimsson
    Prevention Science, 2023, 24 : 1648 - 1658
  • [40] Non-Compliance with On-Site Data Collection in Outdoor Recreation Monitoring
    Fredman, Peter
    Romild, Ulla
    Emmelin, Lars
    Yuan, Michael
    VISITOR STUDIES, 2009, 12 (02) : 164 - 181