On approximate approximations using Gaussian kernels

被引:127
|
作者
Mazya, V [1 ]
Schmidt, G [1 ]
机构
[1] WEIERSTRASS INST APPL ANAL & STOCHAST,D-10117 BERLIN,GERMANY
关键词
D O I
10.1093/imanum/16.1.13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses quasi-interpolation and interpolation with Gaussians. Estimates are obtained showing a high-order approximation up to some saturation error negligible in numerical applications. The construction of local high-order quasi-interpolation formulas is given.
引用
收藏
页码:13 / 29
页数:17
相关论文
共 50 条
  • [41] Brief Announcement: Faster Stencil Computations using Gaussian Approximations
    Ahmad, Zafar
    Chowdhury, Rezaul
    Das, Rathish
    Ganapathi, Pramod
    Gregory, Aaron
    Zhu, Yimin
    PROCEEDINGS OF THE 34TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, SPAA 2022, 2022, : 291 - 293
  • [42] Fuzzy clustering using multiple Gaussian kernels with optimized-parameters
    Issam Dagher
    Fuzzy Optimization and Decision Making, 2018, 17 : 159 - 176
  • [43] Sequential approximate optimization using variable fidelity response surface approximations
    Rodríguez, JF
    Pérez, VM
    Padmanabhan, D
    Renaud, JE
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2001, 22 (01) : 24 - 34
  • [44] Sequential approximate optimization using variable fidelity response surface approximations
    Rodríguez, JF
    Pérez, VM
    Renaud, JE
    COLLECTION OF THE 41ST AIAA/ASME/ASCE/AHS/ASC STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE AND EXHIBIT, VOL 1 PTS 1-3, 2000, : 453 - 463
  • [45] Sequential approximate optimization using variable fidelity response surface approximations
    J.F. Rodríguez
    V.M. Pérez
    D. Padmanabhan
    J.E. Renaud
    Structural and Multidisciplinary Optimization, 2001, 22 : 24 - 34
  • [46] Unsupervised ridge detection using second order anisotropic Gaussian kernels
    Lopez-Molina, C.
    de Ulzurrun, G. Vidal-Diez
    Baetens, J. M.
    Van den Bulcke, J.
    De Baets, B.
    SIGNAL PROCESSING, 2015, 116 : 55 - 67
  • [47] Bayesian optimization with approximate set kernels
    Jungtaek Kim
    Michael McCourt
    Tackgeun You
    Saehoon Kim
    Seungjin Choi
    Machine Learning, 2021, 110 : 857 - 879
  • [48] Fuzzy clustering using multiple Gaussian kernels with optimized-parameters
    Dagher, Issam
    FUZZY OPTIMIZATION AND DECISION MAKING, 2018, 17 (02) : 159 - 176
  • [49] Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels
    Tobar, Felipe
    Bui, Thang D.
    Turner, Richard E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [50] GAUSSIAN APPROXIMATIONS TO WAVE FUNCTIONS
    MCWEENY, R
    NATURE, 1950, 166 (4209) : 21 - 22