CARTOGRAPHY OF BIOSTATISTICS AND MACHINE LEARNING METHODS TO IDENTIFY PROGNOSTIC FACTORS

被引:0
|
作者
Mounier, L. [1 ]
Civet, A. [1 ]
Dupin, J. [1 ]
Pau, D. [1 ]
Esnault, C. [1 ]
机构
[1] Roche, Boulogne 92, France
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
MSR99
引用
收藏
页码:S369 / S369
页数:1
相关论文
共 50 条
  • [21] Use of machine learning to identify risk factors for coronary artery disease
    Huang, Alexander A.
    Huang, Samuel Y.
    PLOS ONE, 2023, 18 (04):
  • [22] Machine Learning to identify factors that affect Human Systolic Blood Pressure
    Pechprasarn, Suejit
    Sukkasem, Chayanisa
    Sasivimolkul, Suvicha
    Suvarnaphaet, Phitsini
    2019 12TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2019), 2019,
  • [23] Using Machine Learning To Identify Factors That Govern Amorphization of Irradiated Pyrochlores
    Pilania, Ghanshyam
    Whittle, Karl R.
    Jiang, Chao
    Grimes, Robin W.
    Stanek, Christopher R.
    Sickafus, Kurt E.
    Uberuaga, Blas Pedro
    CHEMISTRY OF MATERIALS, 2017, 29 (06) : 2574 - 2583
  • [24] Machine learning interrogation of clinical and plasma markers identify prognostic models for cognitive trajectory
    Dastgheyb, Raha
    Chen, Suming
    Venkata, Swarajya Lakshmi Vattem
    Rubin, Leah H.
    Franklin, Donald
    Letendre, Scott
    Heaton, Robert
    McArthur, Justin
    Haughey, Norman
    JOURNAL OF NEUROVIROLOGY, 2018, 24 : S20 - S21
  • [25] Machine learning interrogation of clinical and plasma markers identify prognostic models for cognitive trajectory
    Dastgheyb, Raha
    Chen, Suming
    Venkata, Swarajya Lakshmi Vattem
    Rubin, Leah H.
    Franklin, Donald
    Letendre, Scott
    Heaton, Robert
    McArthur, Justin
    Haughey, Norman
    JOURNAL OF NEUROIMMUNE PHARMACOLOGY, 2018, 13 : S20 - S21
  • [26] Application of Machine Learning to Identify Clustering of Cardiometabolic Risk Factors in US Adults
    Liao, Xiyue
    Kerr, David
    Morales, Jessikah
    Duncan, Ian
    DIABETES TECHNOLOGY & THERAPEUTICS, 2019, 21 (05) : 245 - 253
  • [27] Application of Machine Learning to Identify Influential Factors for Fecal Contamination of Shallow Groundwater
    Wu, Jianyong
    Cao, Yanni
    Islam, Md. Sirajul
    Emch, Michael
    WATER, 2025, 17 (02)
  • [28] Using Machine Learning to Identify the Most Critical Factors Affecting Maintenance of Tunnels
    Ahmed, Muaz O.
    Khalef, Ramy
    Ali, Gasser G.
    El-Adaway, Islam H.
    COMPUTING IN CIVIL ENGINEERING 2021, 2022, : 1433 - 1440
  • [29] Using machine learning to identify factors associated with practice location of the healthcare workforce
    Bounsanga, Jerry
    Lipsky, Martin S.
    Hon, Eric S.
    Licari, Frank W.
    Ruttinger, Clark
    Salt, Andrew
    Hung, Man
    RURAL AND REMOTE HEALTH, 2022, 22 (01):
  • [30] Machine Learning for Predicting Key Factors to Identify Misinformation in Football Transfer News
    Runsewe, Ife
    Latifi, Majid
    Ahsan, Mominul
    Haider, Julfikar
    COMPUTERS, 2024, 13 (06)