Quantum optimal control of multiple weakly interacting molecular rotors in the time-dependent Hartree approximation

被引:8
|
作者
Magann, Alicia [1 ]
Chen, Linhan [2 ]
Ho, Tak-San [3 ]
Rabitz, Herschel [3 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 150卷 / 16期
关键词
DISSOCIATION DYNAMICS; SELF-CONSISTENT; IMPLEMENTATION; ORIENTATION; ALGORITHM;
D O I
10.1063/1.5091520
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We perform quantum optimal control simulations, based on the Time-Dependent Hartree (TDH) approximation, for systems of three to five dipole-dipole coupled OCS rotors. A control electric field is used to steer all of the individual rotors, arranged in chains and regular polygons in a plane, toward either identical or unique objectives. The goal is to explore the utility of the TDH approximation to model the field-induced dynamics of multiple interacting rotors in the weak dipole-dipole coupling regime. A stochastic hill climbing approach is employed to seek an optimal control field that achieves the desired objectives at a specified target time. We first show that multiple rotors in chain and polygon geometries can be identically oriented in the same direction; these cases do not significantly depend on the presence of the dipole-dipole interaction. Additionally, in particular geometrical arrangements, we demonstrate that individual rotors can be uniquely manipulated toward different objectives with the same field. Specifically, it is shown that for a three rotor chain, the two end rotors can be identically oriented in a specific direction while keeping the middle rotor in its ground state, and for an equilateral triangle, two rotors can be identically oriented in a specific direction while the third rotor is oriented in the opposite direction. These multirotor unique objective cases exploit the shape of the field in coordination with dipole-dipole coupling between the rotors. Comparisons to numerically exact calculations, utilizing the TDH-determined fields, are given for all optimal control studies involving systems of three rotors. Published under license by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条